Answer:
The importance of significant figures
As stated before, it is important within the science fields that you are not more precise or accurate than the least accurate or precise number. In science, it is generally agreed upon that the last number digit in any figure is filled with uncertainty.
Explanation:
Answer:
Molarity is the number of moles in a liter of a substance.
Molarity= Mole/volume
Mass= 10g
Molar mass of Carbon=12g
To calculate the mole we use the formula: mole= mass/molar mass
Mole = 10g/12g
Mole = 0.83
Molarity= 0.83/500 =0.0017moles per liter
Answer:
18 O, 17 O, and 16 O
Explanation:
three naturally stable isotopes
Answer:
See explaination
Explanation:
The invariant mass of an electron is approximately9. 109×10−31 kilograms, or5. 489×10−4 atomic mass units. On the basis of Einstein's principle of mass–energy equivalence, this mass corresponds to a rest energy of 0.511 MeV.
Check attachment for further solution to the exercise.
This is a straightforward dilution calculation that can be done using the equation
where <em>M</em>₁ and <em>M</em>₂ are the initial and final (or undiluted and diluted) molar concentrations of the solution, respectively, and <em>V</em>₁ and <em>V</em>₂ are the initial and final (or undiluted and diluted) volumes of the solution, respectively.
Here, we have the initial concentration (<em>M</em>₁) and the initial (<em>V</em>₁) and final (<em>V</em>₂) volumes, and we want to find the final concentration (<em>M</em>₂), or the concentration of the solution after dilution. So, we can rearrange our equation to solve for <em>M</em>₂:

Substituting in our values, we get
![\[M_2=\frac{\left ( 50 \text{ mL} \right )\left ( 0.235 \text{ M} \right )}{\left ( 200.0 \text{ mL} \right )}= 0.05875 \text{ M}\].](https://tex.z-dn.net/?f=%5C%5BM_2%3D%5Cfrac%7B%5Cleft%20%28%2050%20%5Ctext%7B%20mL%7D%20%5Cright%20%29%5Cleft%20%28%200.235%20%5Ctext%7B%20M%7D%20%5Cright%20%29%7D%7B%5Cleft%20%28%20200.0%20%5Ctext%7B%20mL%7D%20%5Cright%20%29%7D%3D%200.05875%20%5Ctext%7B%20M%7D%5C%5D.)
So the concentration of the diluted solution is 0.05875 M. You can round that value if necessary according to the appropriate number of sig figs. Note that we don't have to convert our volumes from mL to L since their conversion factors would cancel out anyway; what's important is the ratio of the volumes, which would be the same whether they're presented in milliliters or liters.