Answer:
(4) option is correct
Explanation:
Given that,
The conformation of 2-methyl-3-pentanol, as viewed along the C₂-C₃ bond.
We need to find the Newman structures
Using given structures
The structure of 2- methyl-3- pentanol is shown in figure.
Through C₂-C₃ carbon shown the structure of Newman projection in figure.
Here, carbon 2 is in front side and carbon 3 is in back side in the figure.
Hence, (4) option is correct.
Answer: Strictly a laboratory analysis and can only be done using the data obtained during analysis
Explanation:
To find a solution to this problem, you need to use the data collected during the lab work. A guide could be finding the possible forms of hydrated copper chlorides in reference books. Since it's also a lab work, you can definitely compare your data with lab mates.
The formula CuxCly.zH₂O and its name chloride hydrate already gives you an idea of the possibilities of the value of the integers, hence you can take a good guess for the identity of the unknown salt and calculate the theoretical formular weight for it. From the that you can proceed to also find the mass of water and copper from your lab analysis.
Answer:

when there is a radical in the denominator, we should rationalize (mutiply the denominator and numerator by the radical) to get rid of the radical in the denominator.
Answer:
mole fraction of N_2 O = 0.330
mole of fraction SF_4 = 0.669
PRESSURE OF N_2 O = 39127.053 Pa
pressure of SF_4 = 792126.36
Total pressure = 118253.413 Pa
Explanation:
Given data:
volume of tank 8 L
Weight of dinitrogen difluoride gas 5.53 g
weight of sulphur hexafluoride gas 17.3 g
Amount of 
amount of 
mole fraction of 
mole of fraction
PV = nRT
P of N_2 O 
mole of SF_4
Total pressure = 39127.053 + 79126.36 = 118253.413 Pa
Answer:
V₂ = 5.97 L
Explanation:
Given data:
Initial temperature = 9°C (9+273 = 282 K)
Initial volume of gas = 6.17 L
Final volume of gas = ?
Final temperature = standard = 273 K
Solution:
Formula:
The Charles Law will be apply to solve the given problem.
According to this law, 'the volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure'
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₂ = V₁T₂/T₁
V₂ = 6.17 L × 273K / 282 k
V₂ = 1684.41 L.K / 282 K
V₂ = 5.97 L