Answer:
83.20 g of Na3PO4
Explanation:
1 mole of Na3PO4 contains 3 moles of Na+.
Mole of Na ion to be prepared = Molarity x volume
= 0.700 x 725/1000
= 0.5075 mole
If 1 mole of Na3PO4 contains 3 moles of Na ion, then 0.5075 Na ion will be contained in:
0.5075/3 x 1 = 0.1692 mole of Na3PO4
mole of Na3PO4 = mass/molar mass = 0.1692
Hence, mass of Na3PO4 = 0.1692 x molar mass
= 0.1692 x 163.94
= 83.20 g.
83.20 g of Na3PO4 will be needed.
Answer:
V=0.68L
Explanation:
For this question we can use
V1/T1 = V2/T2
where
V1 (initial volume )= 0.75 L
T1 (initial temperature in Kelvin)= 303.15
V2( final volume)= ?
T2 (final temperature in Kelvin)= 273.15
Now we must rearrange the equation to make V2 the subject
V2= (V1/T1) ×T2
V2=(0.75/303.15) ×273.15
V2=0.67577931717
V2= 0.68L
Answer:
6.02*10^23
Explanation:
This is the number for one mole. Just like one dozen = 12, one mole = 6.02*10^23.
Fun fact, if you had a mole of pennies you could spend 1 million dollars every second of your life and not have even spent 1% of it by the time you die at 100 years old.
Answer:
According to libretexts the answer would be B. decreases.
Explanation:
If the hydrogen concentration increases, the pH decreases, causing the solution to become more acidic. This happens when an acid is introduced. ... If the hydrogen concentration decreases, the pH increases, resulting in a solution that is less acidic and more basic