1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sav [38]
3 years ago
12

Two cars collide at an intersection. One car has a mass of 1600 kg and is

Physics
1 answer:
pickupchik [31]3 years ago
4 0

The combined momentum is 4000 kg m/s south

Explanation:

The total combined momentum of the two cars is given by the vector addition of the momenta of the two cars.

For this problem, we choose north as positive direction and south as negative direction.

The momentum of the first car travelling north is given by:

p_1 = m_1 v_1

where

m_1 = 1600 kg is the mass of the car

v_1 = +8 m/s is its velocity

Substituting,

p_1 = (1600)(8)=+12800 kg m/s

The momentum of the second car travelling south is given by:

p_2 = m_2 v_2

where

m_2 = 1400 kg is the mass of the car

v_2= -12 m/s is its velocity (negative because the car travels south)

Substituting,

p_2 = (1400)(-12)=-16800 kg m/s

And therefore, the combined momentum is

p=p_1 + p_2 = +12800 + (-16800)=-4000 kg m/s

where the negative sign means the direction of the total momentum is south.

Learn more about momentum:

brainly.com/question/7973509

brainly.com/question/6573742

brainly.com/question/2370982

brainly.com/question/9484203

#LearnwithBrainly

You might be interested in
When the pendulum bob reaches the mean position, the net force acting on it is zero. Why then does it swing past the mean positi
ryzh [129]

Answer:

<u>The pendulum bob swing past the mean position because:</u>

When a pendulum's bob is accelerating at its extreme position its velocity is zero. Due to  the restoring toque the bob starts to accelerates towards its mean postion. The  maximum acceleration of the pendulum's bob  is -w^{2} Aand the the acceleration decreases as -w^{2} x  towards the mean position.

The acceleration at the mean position becomes zero but the velocity remains maximum. Hence the bob continues to move and does not stops.Thus it can summarised as the force decreases ,acceleration decreases and velocity increases at slow rate.

6 0
3 years ago
As a rain storm passes through a region, there is an associated drop in atmospheric pressure. If the height of a mercury baromet
Pani-rosa [81]

Answer:

new atmospheric pressure is 0.9838 × 10^{5}  Pa

Explanation:

given data

height = 21.6 mm = 0.0216 m

Normal atmospheric pressure = 1.013 ✕ 10^5 Pa

density of mercury = 13.6 g/cm³

to find out

atmospheric pressure

solution

we find first height of mercury when normal pressure that is

pressure p = ρ×g×h

put here value

1.013 × 10^{5}  = 13.6 × 10³ × 9.81 × h

h =  0.759 m

so change in height Δh = 0.759 - 0.0216

new height H = 0.7374 m

so new pressure = ρ×g×H

put here value

new pressure = 13.6 × 10³ × 9.81 × 0.7374

atmospheric pressure = 98380.9584

so new atmospheric pressure is 0.9838 × 10^{5}  Pa

6 0
3 years ago
A toy gun uses a spring to project a 4.5-g soft rubber sphere horizontally. The spring constant is 8.0 N/m, the barrel of the gu
marishachu [46]

Answer:

1.93 m/s

Explanation:

Parameters given:

Mass = 4.5g = 0.0045kg

Spring constant = 8.0 N/m

Length of barrel = 13 cm = 0.013m

Frictional force = 0.035N

Compression = 5.8 cm = 0.058m

First, we find the P. E. stored in the spring:

P. E. = ½*k*x²

P. E. = ½ * 8 * 0.058² = 0.013J

Then, we find the work done by the frictional force while the sphere is leaving the barrel of the gun:

Work = Force * distance

The distance here is the length of the barrel.

Work = 0.035 * 0.13 = 0.0046 J

The kinetic energy of the sphere can now be found:

K. E. = P. E. - Work done

K. E. = 0.013 - 0.0046 = 0.0084J

We can now find the speed using the formula for K. E.:

K. E. = ½*m*v²

0.0084 = ½ * 0.0045 * v²

v² = 0.0084/0.00255 = 3.733

=> v = 1.93 m/s

4 0
3 years ago
Read 2 more answers
If the student hit a drum in his bedroom how would the sound wave behave differently than if he hit it in a swimming pool? Pleas
zlopas [31]
The sound wave would behave differently in a swimming pool than in his bedroom because sound waves travel faster in more dense mediums; such as water. The wave will travel faster in water, and slower in air.
4 0
3 years ago
I NEED HELP PLEASE, THANKS! :)
mrs_skeptik [129]

Answer:

1. Largest force: C;  smallest force: B; 2. ratio = 9:1

Explanation:

The formula for the force exerted between two charges is

F=K\dfrac{ q_{1}q_{2}}{r^{2}}

where K is the Coulomb constant.

q₁ and q₂ are also identical and constant, so Kq₁q₂ is also constant.

For simplicity, let's combine Kq₁q₂ into a single constant, k.

Then, we can write  

F=\dfrac{k}{r^{2}}

1. Net force on each particle

Let's

  • Call the distance between adjacent charges d.
  • Remember that like charges repel and unlike charges attract.

Define forces exerted to the right as positive and those to the left as negative.

(a) Force on A

\begin{array}{rcl}F_{A} & = & F_{B} + F_{C} + F_{D}\\& = & -\dfrac{k}{d^{2}}  - \dfrac{k}{(2d)^{2}}  +\dfrac{k}{(3d)^{2}}\\& = & \dfrac{k}{d^{2}}\left(-1 - \dfrac{1}{4} + \dfrac{1}{9} \right)\\\\& = & \dfrac{k}{d^{2}}\left(\dfrac{-36 - 9 + 4}{36} \right)\\\\& = & \mathbf{-\dfrac{41}{36} \dfrac{k}{d^{2}}}\\\\\end{array}

(b) Force on B

\begin{array}{rcl}F_{B} & = & F_{A} + F_{C} + F_{D}\\& = & \dfrac{k}{d^{2}}  - \dfrac{k}{d^{2}}  + \dfrac{k}{(2d)^{2}}\\& = & \dfrac{k}{d^{2}}\left(\dfrac{1}{4} \right)\\\\& = &\mathbf{\dfrac{1}{4} \dfrac{k}{d^{2}}}\\\\\end{array}

(C) Force on C

\begin{array}{rcl}F_{C} & = & F_{A} + F_{B} + F_{D}\\& = & \dfrac{k}{(2d)^{2}} + \dfrac{k}{d^{2}}  + \dfrac{k}{d^{2}}\\& = & \dfrac{k}{d^{2}}\left( \dfrac{1}{4} +1 + 1 \right)\\\\& = & \dfrac{k}{d^{2}}\left(\dfrac{1 + 4 + 4}{4} \right)\\\\& = & \mathbf{\dfrac{9}{4} \dfrac{k}{d^{2}}}\\\\\end{array}

(d) Force on D

\begin{array}{rcl}F_{D} & = & F_{A} + F_{B} + F_{C}\\& = & -\dfrac{k}{(3d)^{2}}  - \dfrac{k}{(2d)^{2}}  - \dfrac{k}{d^{2}}\\& = & \dfrac{k}{d^{2}}\left( -\dfrac{1}{9} - \dfrac{1}{4} -1 \right)\\\\& = & \dfrac{k}{d^{2}}\left(\dfrac{-4 - 9 -36}{36} \right)\\\\& = & \mathbf{-\dfrac{49}{36} \dfrac{k}{d^{2}}}\\\\\end{array}

(e) Relative net forces

In comparing net forces, we are interested in their magnitude, not their direction (sign), so we use their absolute values.

F_{A} : F_{B} : F_{C} : F_{D}  =  \dfrac{41}{36} : \dfrac{1}{4} : \dfrac{9}{4} : \dfrac{49}{36}\ = 41 : 9 : 81 : 49\\\\\text{C experiences the largest net force.}\\\text{B experiences the smallest net force.}\\

2. Ratio of largest force to smallest

\dfrac{ F_{C}}{ F_{B}} = \dfrac{81}{9} = \mathbf{9:1}\\\\\text{The ratio of the largest force to the smallest is $\large \boxed{\mathbf{9:1}}$}

7 0
3 years ago
Other questions:
  • What is the prefix for oxygen in As2O5? tri- di- mono- penta-
    15·2 answers
  • A basketball star exerts a force of 3225 n (average value) upon the gym floor in order to accelerate his 76.5-kg body upward. de
    10·1 answer
  • Can someone help??
    15·1 answer
  • The atomic mass of an element is A. the sum of the protons and electrons in one atom of the element. B. twice the number of prot
    11·1 answer
  • How do the different forms of potential energy depend on an object's position or chemical composition?
    15·1 answer
  • Explain why increasing the mass of a car affects how the car rolls down a ramp.
    7·2 answers
  • The cart travels the track again and now experiences a constant tangential acceleration from point A to point C. The speeds of t
    12·1 answer
  • Please solve this worksheet for me It’s very important please don’t write unnecessary things or else I’ll report please help me
    11·1 answer
  • Diana has just been diagnosed with "pre-diabetes," and her doctor has instructed her to watch her intake of sugar. This is easy
    10·2 answers
  • An object completes 50 cycles in 150 s.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!