Answer:
a = kL/m
Explanation:
Here we can use Hooke's Law to find out the force applied on the system. Hooke's Law states that when a spring is stretched by some force, the force applied is directly proportional to the displacement of spring. The formula is given as:
F = kL
Now, the Newton's Second Law of motion states that whenever an unbalanced force is applied to a body it produces an acceleration in the body, in its own direction. So, the force is given by the formula:
F = ma
Comparing both the forces, we get:
kL = ma
<u>a = kL/m</u>
Answer:
<h3>The power of headlight in series connection is 29.64 W</h3>
Explanation:
Given :
Power of headlight
W
Power of starter
W
Voltage of headlight and starter
V
From equation of power,


For finding the resistance of headlight and starter,
⇒ For headlight,
Ω
⇒ For starter,
Ω
Since equivalent resistance,

Ω
So power in series is given by,

W
<span>node spacing = half of wavelength = 3 cm
velocity = 10 cm/s = freq * wavelength
hench freq = 10/6 = 5/3 = 1.7 hz</span>
Answer:
Professor Hawking had just turned 21 when he was diagnosed with a very rare slow-progressing form of ALS, a form of motor neurone disease (MND). He was at the end of his time at Oxford when he started to notice early signs of his disease. He was getting more clumsy and fell over several times without knowing why.
Explanation:
none
You find yourself in a place that is unimaginably <u>hot and dense</u>. A r<u>apidly changing</u><u> gravitational field</u><u> </u>randomly warps space and time. Gripped by these huge fluctuations, you notice that there is but a single, unified force governing the universe, you are in the early universe before the Planck time.
<h3>What is Planck time?</h3>
The Planck time is approximately<u> 10^-44 seconds</u>. The smallest time interval, or "zeptosecond," that has so far been measured is <u>10^-21 seconds</u>. A photon traveling at the speed of light would need one Planck time <u>to traverse a distance of one </u><u>Planck length</u>.
<h3>What is Planck length?</h3>
Planck units are a set of measuring units used only in particle physics and physical cosmology. They are defined in terms of <u>four universal </u><u>physical constants</u> in such a way that when expressed in terms of these units, these physical constants have the numerical value 1. These units are a system of natural units because its definition is <u>based on characteristics of nature</u>, more especially the characteristics of free space, rather than a selection of prototype object, as was the case with Max Planck's original 1899 proposal. They are pertinent to the study of unifying theories like quantum gravity.
To learn more about Plank time:
brainly.com/question/23791066
#SPJ4