<h2>
Answer: x=125m, y=48.308m</h2>
Explanation:
This situation is a good example of the projectile motion or parabolic motion, in which we have two components: x-component and y-component. Being their main equations to find the position as follows:
x-component:
(1)
Where:
is the projectile's initial speed
is the angle
is the time since the projectile is launched until it strikes the target
is the final horizontal position of the projectile (the value we want to find)
y-component:
(2)
Where:
is the initial height of the projectile (we are told it was launched at ground level)
is the final height of the projectile (the value we want to find)
is the acceleration due gravity
Having this clear, let's begin with x (1):
(3)
(4) This is the horizontal final position of the projectile
For y (2):
(5)
(6) This is the vertical final position of the projectile
Answer:

Explanation:
Work is equal to the product of force and distance.

The force is 8 Newtons and the distance is 15 meters.

Substitute the values into the formula.

Multiply.

- 1 Newton meter is equal to 1 Joule
- Our answer of 120 N*m equals 120 J

The work done is <u>120 Joules</u>
Answer:
Then the cell won't be able to function properly. With no nucleus the cell will lose control. It won't know what to do and there will be no cell division.
Explanation:
Kinetic energy = (1/2) (mass) (speed)²
= (1/2) (1.4 kg) (22.5 m/s)²
= (0.7 kg) (506.25 m²/s² )
= 354.375 kg-m²/s² = 354.375 joules .
This is just the kinetic energy associated with a 1.4-kg glob of
mass sailing through space at 22.5 m/s. In the case of a frisbee,
it's also spinning, and there's some additional kinetic energy stored
in the spin.
Answer:
1350N
Explanation:
Weight = Mass x Acceleration Due to Gravity
W=mg
W=90*15=1350N