I think the best word here would be compress. It is to compress that is defined as to squeeze a gas into a smaller space. Compression is the reduction of volume which cause an increase in pressure of the gas. Hope this answers the question. Have a nice day.
Answer:

Explanation:
Given that,
Radius of a spherical shell, r = 0.7 m
Torque acting on the shell, 
Angular acceleration of the shell, 
We need to find the rotational inertia of the shell about the axis of rotation. The relation between the torque and the angular acceleration is given by :

I is the rotational inertia of the shell

So, the rotational inertia of the shell is
.
Originally there must been
1,4775E6 + 2.25E4 = 147.75E4 + 2.25E4 = 150E4 present at start
% = 2.25 / 150 = 1.5 % of 235 U left
- Initial velocity (u) = 0 m/s [the car was at rest]
- Distance (s) = 80 m
- Time (t) = 10 s
- Let the magnitude of acceleration be a.
- By using the equation of motion,
we get,
<u>A</u><u>nswer:</u>
<u>The </u><u>magnitude</u><u> </u><u>of </u><u>its </u><u>acceleration</u><u> </u><u>is </u><u>1</u><u>.</u><u>6</u><u> </u><u>m/</u><u>s^</u><u>2</u><u>.</u>
Hope you could get an idea from here.
Doubt clarification - use comment section.
Kepler's second law of planetary motion<span> describes the speed of a </span>planet<span> traveling in an elliptical orbit around the sun. It states that a line between the sun and the </span>planetsweeps equal areas in equal times. Thus, the speed of theplanet<span> increases as it nears the sun and decreases as it recedes from the sun.</span>