Molar mass:
O2 = 16 x 2 = 32.0 g/mol Mg = 24 g/mol
<span>2 Mg(s) + O2(g) --->2 MgO(s)
</span>
2 x 24.0 g Mg -------------> 32 g O2
5.00 g Mg -----------------> ( mass of O2)
mass of O2 = 5.00 x 32 / 2 x 24.0
mass of O2 = 160 / 48
= 3.33 g of O2
hope this helps!
Answer:
B
Explanation:
Atomic # = Protons
it says 4 p in the inside of the orbital
Answer:
2,2,3,3-tetrapropyloxirane
Explanation:
In this case, we have to know first the alkene that will react with the peroxyacid. So:
<u>What do we know about the unknown alkene? </u>
We know the product of the ozonolysis reaction (see figure 1). This reaction is an <u>oxidative rupture reaction</u>. Therefore, the double bond will be broken and we have to replace the carbons on each side of the double bond by oxygens. If
is the only product we will have a symmetric molecule in this case 4,5-dipropyloct-4-ene.
<u>What is the product with the peroxyacid?</u>
This compound in the presence of alkenes will produce <u>peroxides.</u> Therefore we have to put a peroxide group in the carbons where the double bond was placed. So, we will have as product <u>2,2,3,3-tetrapropyloxirane.</u> (see figure 2)
Answer:
The bombarding particle is a Proton
Explanation:
A Nuclear transmutation reaction occurs when radioactive element decay, usually converting them from one element/isotope into another element. Transmutation is the process which causes decay, generally, alpha or beta.
¹⁶₈O(P,alpha) ¹³₇N, can be written as
¹⁶₈O + x goes to ¹³₇N + ⁴₂He
Where x can be anything, balancing the equation in order to give us the correct amount of proton number and nucleus number
16 + x = 13 + 4
x = 17 – 16 = 1, Hence we can say that x = ¹₁P
<u>¹⁶₈O + ¹₁P goes to ¹³₇N + ⁴₂He</u>
Here we can clearly see the bombarding particle is ¹₁P (proton). The ejected particle being ⁴₂He which is also known as an alpha particle