H2O, also known as water, stands for two hydrogen atoms and one oxygen atom. Hope this helps! ^^
Answer:
-21 kJ·mol⁻¹
Explanation:
Data:
H₃O⁺ + OH⁻ ⟶ 2H₂O
V/mL: 50 50
c/mol·dm⁻³: 1.0 1.0
ΔT = 4.5 °C
C = 4.184 J·°C⁻¹g⁻¹
C_cal = 50 J·°C⁻¹
Calculations:
(a) Moles of acid

So, we have 0.050 mol of reaction
(b) Volume of solution
V = 50 dm³ + 50 dm³ = 100 dm³
(c) Mass of solution

(d) Calorimetry
There are three energy flows in this reaction.
q₁ = heat from reaction
q₂ = heat to warm the water
q₃ = heat to warm the calorimeter
q₁ + q₂ + q₃ = 0
nΔH + mCΔT + C_calΔT = 0
0.050ΔH + 100×4.184×4.5 + 50×4.5 = 0
0.050ΔH + 1883 + 225 = 0
0.050ΔH + 2108 = 0
0.050ΔH = -2108
ΔH = -2108/0.0500
= -42 000 J/mol
= -42 kJ/mol
This is the heat of reaction for the formation of 2 mol of water
The heat of reaction for the formation of mol of water is -21 kJ·mol⁻¹.
Answer:
ΔSv = 0.1075 KJ/mol.K
Explanation:
Binary solution:
∴ a: solvent
∴ b: solute
in equilibrium:
- μ*(g) = μ(l) = μ* +RTLnXa....chemical potential (μ)
⇒ Ln (1 - Xb) = ΔG/RT
∴ ΔG = ΔHv - TΔSv
⇒ Ln(1 -Xb) = ΔHv/RT - ΔSv/R
∴ Xb → 0:
⇒ Ln(1) = ΔHv/RT - ΔSv/R
∴ T = T*b....normal boiling point
⇒ 0 = ΔHv/RT*b - ΔSv/R
⇒ ΔSv = (R)(ΔHv/RT*b)
⇒ ΔSv = ΔHv/T*b
∴ T*b = 80°C ≅ 353 K
⇒ ΔSv = (38 KJ/mol)/(353 K)
⇒ ΔSv = 0.1075 KJ/mol.K
Answer:
Explanation:
If an atom has 13 electrons then it belongs to p-block of periodic table.
s level can accommodate 2 electrons.
p level can accommodate 6 electrons.
13 means 1s2 2s2 2p6 3s2 3p1.
As you can see there totally 5 sub-shells.
Total number of shells are 3(1,2,3).
<span>Answer:
Moles Ca(NO3)2 = 100 x 0.250 / 1000 = 0.025
Ca(NO3)2 >> Ca2+ + 2NO3-
Moles NO3- = 2 x 0.025 = 0.05
Moles HNO3 = 400 x 0.100 / 1000 = 0.04
Total moles = 0.05 + 0.04 = 0.09
Total volume = 500 ml = 0.500 L
M = 0.09 / 0.500 = 0.18</span>