Answer:
sure if its easy im jp ill help u
Explanation:
The boat is initially at equilibrium since it seems to start off at a constant speed of 5.5 m/s. If the wind applies a force of 950 N, then it is applying an acceleration <em>a</em> of
950 N = (2300 kg) <em>a</em>
<em>a</em> = (950 N) / (2300 kg)
<em>a</em> ≈ 0.413 m/s²
Take east to be positive and west to be negative, so that the boat has an initial velocity of -5.5 m/s. Then after 11.5 s, the boat will attain a velocity of
<em>v</em> = -5.5 m/s + <em>a</em> (11.5 s)
<em>v</em> = -0.75 m/s
which means the wind slows the boat down to a velocity of 0.75 m/s westward.
solution:
We know v0 = 0, a = 9.8, t = 4.0. We need to solve for v
so,
we use the equation:
v = v0 + at
v = 0 + 9.8*4.0
v = 39.2 m/s
Now we just need to solve for d, so we use the equation:
d = v0t + 1/2*a*t^2
d = 0*4.0 + 1/2*9.8*4.0^2
d = 78.4 m
Answer:
(a) 
(b) 
Explanation:
<u>Given:</u>
= The first temperature of air inside the tire = 
= The second temperature of air inside the tire = 
= The third temperature of air inside the tire = 
= The first volume of air inside the tire
= The second volume of air inside the tire = 
= The third volume of air inside the tire = 
= The first pressure of air inside the tire = 
<u>Assume:</u>
= The second pressure of air inside the tire
= The third pressure of air inside the tire- n = number of moles of air
Since the amount pof air inside the tire remains the same, this means the number of moles of air in the tire will remain constant.
Using ideal gas equation, we have

Part (a):
Using the above equation for this part of compression in the air, we have

Hence, the pressure in the tire after the compression is
.
Part (b):
Again using the equation for this part for the air, we have

Hence, the pressure in the tire after the car i driven at high speed is
.
Answer:
23.49m
Explanation:
Distance = velocity x time
8.7 x 2.7 = 23.49m