Answer:
Rate of forward reaction will increase.
Explanation:
Effect of change in reaction condition on equilibrium is explained by Le Chatelier's principle. According to this principle,
If an equilibrium condition of a dynamic reversible reaction is disturbed by changing concentration, temperature, pressure, volume, etc, then reaction will move will in a direction which counteract the change.
In the given reaction,
A + B ⇌ C + D
If concentration of A is increase, then reaction will move in a direction which decreases the concentration of A to reestablish the equilibrium.
As concentration A decreases in forward direction, therefore, rate of forward reaction will increase.
If the moon did not rotate we would see all hemispheres of the moon as it revolves around the Earth and not just the phases.
Answer:
(1) addition of HBr to 2-methyl-2-pentene
Explanation:
In this case, we will have the formation of a <u>carbocation</u> for each molecule. For molecule 1 we will have a <u>tertiary carbocation</u> and for molecule 2 we will have a <u>secondary carbocation</u>.
Therefore the <u>most stable carbocation</u> is the one produced by the 2-methyl-2-pentene. So, this molecule would react faster than 4-methyl-1-pentene. (See figure)
<span>. They make sure their experiments can be repeated</span>
Answer:
D. Anti-periplanar
Explanation:
In the <u>second step</u> of the intramolecular William Ether Synthesis mechanism (figure 1) we will have the attack of the negative charge of the oxygen to the carbon bond to the Br. At the same time the Br leaves, so a bond would be broken (the <u>C-Br</u> bond) and a bond would be formed (the <u>C-O</u> bond).
Now, this process can happen only if the <u>attack</u> and the <u>leaving group </u>has an anti configuration (figure 2). In an anti configuration the <u>nucleophile</u> and the <u>leaving group</u> would have <u>opposite directions</u>.