Answer:
I think it has to do something with their ionizations... not entirely sure though.
Explanation:
Answer:
the coefficient of volume expansion of the glass is 
Explanation:
Given that:
Initial volume of the glass flask = 1000 cm³ = 10⁻³ m³
temperature of the glass flask and mercury= 1.00° C
After heat is applied ; the final temperature = 52.00° C
Temperature change ΔT = 52.00° C - 1.00° C = 51.00° C
Volume of the mercury overflow = 8.50 cm^3 = 8.50 × 10⁻⁶ m³
the coefficient of volume expansion of mercury is 1.80 × 10⁻⁴ / K
The increase in the volume of the mercury = 10⁻³ m³ × 51.00 × 1.80 × 10⁻⁴
The increase in the volume of the mercury = 
Increase in volume of the glass = 10⁻³ × 51.00 × 
Now; the mercury overflow = Increase in volume of the mercury - increase in the volume of the flask
the mercury overflow = 






Thus; the coefficient of volume expansion of the glass is 
Answer:
1.58 Hz
Explanation:
The frequency of the simple pendulum is given by
f = 1/T
= 1/2π√g/l
In this problem, I = 10.0 cm = 0.1 m
f = 1/2π√9.8/0.1
= 1.58 Hz
Answer:
The correct answer is D.
Non-sampling error is the error that results from under-coverage, non-response bias, response bias, or data-entry errors. Sampling error is the error that results because a sample is being used to estimate information about a population.
Explanation:
Sampling error is related to the variation between the true values of the sample and the population. If occurred, it is always random depending upon the sample chosen.
Non-sampling error can be random as well as non-random. Non-sampling error can occur irrespective of the sample chosen. It is related to the inappropriate analysis of the data.
Answer:
<h2>
E = 2.8028*10⁻¹⁹ Joules</h2>
Explanation:
The minimum energy needed to eject electrons from a metal with a threshold frequency fo is expressed as E = hfo
h = planck's constant
fo = threshold frequency
Given the threshold frequency fo = 4.23×10¹⁴ s⁻¹
h = 6.626× 10⁻³⁴ m² kg / s
Substituting this value into the formula to get the energy E
E = 4.23×10¹⁴ * 6.626 × 10⁻³⁴
E = 28.028*10¹⁴⁻³⁴
E = 28.028*10⁻²⁰
E = 2.8028*10⁻¹⁹ Joules