Answer:
7560 Joules
Explanation:
= Mass of first car = 
= Mass of second car = 
= Initial Velocity of first car = 0.3 m/s
= Initial Velocity of second car = -0.12 m/s
v = Velocity of combined mass
As linear momentum of the system is conserved

Energy lost is

The Energy lost in the collision is 7560 Joules
Answer:
2 is the numerical answer.
Explanation:
Hello there!
In this case, according to the given information and formula, it is possible for us to remember that equation for the calculation of the average kinetic energy of a gas is:

Whereas R is the universal gas constant, NA the Avogadro's number and T the temperature.
Which means that for the given ratio, we can obtain the value as follows:

Regards!
The total amount of energy always stays the same because of the law of conservation of energy, meaning that there is always the same amount of energy, it just gets turned into different forms like potential energy, kinetic energy, sound, thermal, etc.
The temperature is colder, and the water pressure is higher.
<span>An example of a high energy electromagnetic wave is "X-Ray"
When car runs, it's chemical energy (gasoline) converts into mechanical energy
Temperature is the measure of hotness or coldness of the body, so when heat expose to a substance, it's degree of hotness increases & it's temperature increases
Hope this helps!
</span>