Now let’s say you’re on the Moon. If you were to drop a hammer and a feather from the same height, which would hit the ground first?
Trick Question! On the moon both objects would hit the ground at the same time. On Earth, the hammer lands first.
So yeah, the student is right. Galileo gave us this theory long ago.
Hey! How are you? My name is Maria, 19 years old. Yesterday broke up with a guy, looking for casual sex.
Write me here and I will give you my phone number - *pofsex.com*
My nickname - Lovely
In 2 days there are 48 hours
to find the average speed per hour, divide 2,387 by 48
Which gets you the answer 49.72
Which rounds up to 50
The average speed is 50mph
Answer:
at t=46/22, x=24 699/1210 ≈ 24.56m
Explanation:
The general equation for location is:
x(t) = x₀ + v₀·t + 1/2 a·t²
Where:
x(t) is the location at time t. Let's say this is the height above the base of the cliff.
x₀ is the starting position. At the base of the cliff we'll take x₀=0 and at the top x₀=46.0
v₀ is the initial velocity. For the ball it is 0, for the stone it is 22.0.
a is the standard gravity. In this example it is pointed downwards at -9.8 m/s².
Now that we have this formula, we have to write it two times, once for the ball and once for the stone, and then figure out for which t they are equal, which is the point of collision.
Ball: x(t) = 46.0 + 0 - 1/2*9.8 t²
Stone: x(t) = 0 + 22·t - 1/2*9.8 t²
Since both objects are subject to the same gravity, the 1/2 a·t² term cancels out on both side, and what we're left with is actually quite a simple equation:
46 = 22·t
so t = 46/22 ≈ 2.09
Put this t back into either original (i.e., with the quadratic term) equation and get:
x(46/22) = 46 - 1/2 * 9.806 * (46/22)² ≈ 24.56 m
Which of these is an example of convection?
<u>
A. an egg boiling in water
</u>
B. an egg frying in a pan
C. an egg exposed to a flame
D. an egg warming under a light