The position of the object at time t =2.0 s is <u>6.4 m.</u>
Velocity vₓ of a body is the rate at which the position x of the object changes with time.
Therefore,

Write an equation for x.

Substitute the equation for vₓ =2t² in the integral.

Here, the constant of integration is C and it is determined by applying initial conditions.
When t =0, x = 1. 1m

Substitute 2.0s for t.

The position of the particle at t =2.0 s is <u>6.4m</u>
Find the force that would be required in the absence of friction first, then calculate the force of friction and add them together. This is done because the friction force is going to have to be compensated for. We will need that much more force than we otherwise would to achieve the desired acceleration:

The friction force will be given by the normal force times the coefficient of friction. Here the normal force is just its weight, mg

Now the total force required is:
0.0702N+0.803N=0.873N
Answer:
F = Force (Measured in Newtons, N), m = Mass (Measured in kilograms, kg), and a = acceleration (Measured in metres per second squared, 
Explanation:
This is Newton's Second Law!
Hope this helps!
PLS mark as brainliest, hope this helps!
Answer:
Vx = 10.9 m/s , Vy = 15.6 m/s
Explanation:
Given velocity V= 19 m/s
the angle 35 ° is taken from Y-axis so the angle with x-axis will be 90°-35° = 55°
θ = 55°
to Find Vx = ? and Vy= ?
Vx = V cos θ
Vx = 19 m/s × cos 55°
Vx = 10.9 m/s
Vx = V sin θ
Vy = 19 m/s × sin 55°
Vy = 15.6 m/s
Answer:
False
Explanation:
The steel ball and the wooden ball do not have the same force acting on them because their masses are different. But, they have the same acceleration which is the acceleration due to gravity g = 9.8 m/s².
Using the equation of motion under freefall, s = ut +1/2gt². Since u = 0,
s = 1/2gt² ⇒ t = √(2s/g)
Since. s = height is the same for both objects, they land at the same time neglecting air resistance.