Answer:
Total distance = 700 m
Displacement = 500 m
Explanation:
Notice that Jed travelled a total of 3 x 100 m = 300 m in the North direction, and 300 m + 100 m = 400 m in the East direction. Therefore the total distance he travelled is: 300 + 400 = 700 m.
But the actual displacement is given by the Pythagorean theorem as the hypotenuse of a right angle triangle of legs 300 m and 400 m:
displacement = 
The average velocity is 12.5 meters per second
Answer:
v₀ₓ = 63.5 m/s
v₀y = 54.2 m/s
Explanation:
First we find the net launch velocity of projectile. For that purpose, we use the formula of kinetic energy:
K.E = (0.5)(mv₀²)
where,
K.E = initial kinetic energy of projectile = 1430 J
m = mass of projectile = 0.41 kg
v₀ = launch velocity of projectile = ?
Therefore,
1430 J = (0.5)(0.41)v₀²
v₀ = √(6975.6 m²/s²)
v₀ = 83.5 m/s
Now, we find the launching angle, by using formula for maximum height of projectile:
h = v₀² Sin²θ/2g
where,
h = height of projectile = 150 m
g = 9.8 m/s²
θ = launch angle
Therefore,
150 m = (83.5 m/s)²Sin²θ/(2)(9.8 m/s²)
Sin θ = √(0.4216)
θ = Sin⁻¹ (0.6493)
θ = 40.5°
Now, we find the components of launch velocity:
x- component = v₀ₓ = v₀Cosθ = (83.5 m/s) Cos(40.5°)
<u>v₀ₓ = 63.5 m/s</u>
y- component = v₀y = v₀Sinθ = (83.5 m/s) Sin(40.5°)
<u>v₀y = 54.2 m/s</u>
Answer:
Modern telescopes are capable of seeing bright galaxies up to about 10000 millions light years away
Explanation:
A telescope is a tool that astronomers use to see faraway objects. Most telescopes work by using curved mirrors to gather and focus light from the night sky. The bigger the mirrors or lenses, the more light the telescope can gather.
Modern telescopes gather information from the electromagnetic spectrum far beyond the range of visible light.
The farthest bright galaxies, that the modern telescope is capable of seeing is 10000 millions light years away.