Answer:
a) X = 17.64 m
b) X = 17.64 + 4∆t^2 + 16.8∆t
c) Velocity = lim(∆t→0)〖∆X/∆t〗 = 16.8 m/s
Explanation:
a) The position at t = 2.10s is:
X = 4t^2
X = 4(2.10)^2
X = 17.64 m
b) The position at t = 2.10 + ∆t s will be:
X = 4(2.10 + ∆t)^2
X = 17.64 + 4∆t^2 + 16.8∆t m
c) ∆X is the difference between position at t = 2.10s and t = 2.10 + ∆t so,
∆X= 4∆t^2 + 16.8∆t
Divide by ∆t on both sides:
∆X/∆t = 4∆t + 16.8
Taking the limit as ∆t approaches to zero we get:
Velocity =lim(∆t→0)〖∆X/∆t〗 = 4(0) + 16.8
Velocity = 16.8 m/s
(1 cal/g °C) x (4000 g) x (45 - 25)°C = 80000 cal = 80 kcal. So the answer is 80 kcal .
Answer:
Coefficient of friction will be 0.587
Explanation:
We have given mass of the car m = 500 kg
Distance s = 18.25 m
Initial velocity of the car u = 14.5 m/sec
As the car finally stops so final velocity v = 0 m/sec
From second equation of motion
We know that acceleration is given by
So coefficient of friction will be 0.587
Answer:
Magnitude of the magnetic field inside the solenoid near its centre is 1.293 x 10⁻³ T
Explanation:
Given;
number of turns of solenoid, N = 269 turn
length of the solenoid, L = 102 cm = 1.02 m
radius of the solenoid, r = 2.3 cm = 0.023 m
current in the solenoid, I = 3.9 A
Magnitude of the magnetic field inside the solenoid near its centre is calculated as;
Where;
μ₀ is permeability of free space = 4π x 10⁻⁷ m/A
Therefore, magnitude of the magnetic field inside the solenoid near its centre is 1.293 x 10⁻³ T
Answer: Negatively charged particles are repelled by other negatively charged particles
Explanation: