Answer: 82.0 g/mole
Explanation:
Use the units to see that if we divide 1.64 grams by 0.0200 moles, we'll get a number that is grams/mole, the definition of formula mass.
1.64/0.0200 = 82.0 g/mole (3 sig figs)
We can't tell from this alone what the molecular formula might be, but C6H10 (cyclohexene) comes close (82.1 grams/mole).
Answer:
Explanation:
21. Atoms are not created or destroyed means that atoms that you begin with are the atoms that you will end with. The catch is that the atoms will rearrange to give you new compounds, but the atoms that you initially had are the atoms you will still have after reaction. For eg, if you started with eggs and made omelet. Omelet is a "new" compound, but the atoms that were in the eggs have rearranged to become the omelet so can you see that atoms were not created or destroyed to make the omelet.
22. Yes because amount of products you make depends on how much reactants you have. For eg, I need two graham cracker(GC), one marshmallow(M), and one chocolate (C) to make a s'more. If I get more of each item then I can make more s'mores and consequently having minimum amounts results in less s'mores that I make.
23. Not possible, due to law of conservation of matter and energy. Atoms cannot be created nor be destroyed, they are simply rearranged. For eg, Taking A + B cannot give you a new compound with a chemical formula D or XZ. A + B can however give you AB which is rearrangement of the starting atoms.
24. Chemical equation is balanced when atoms on reactant side and atoms of product side are in equal counts. I have attached a graphic below for more help.
Answer:
The specific heat capacity of the metal is 0.268 J/g°C
Explanation:
Step 1: Data given
Mass of the metal = 151.5 grams
The temperature of the metal = 75.0 °C
Temperature of water = 15.1 °C
The temperature of the water rises to 18.7°C.
The specific heat capacity of water is 4.18 J/°C*g
Step 2: Calculate the specific heat capacity of the metal
heat lost = heat gained
Q = m*c*ΔT
Qmetal = - Qwater
m(metal) * c(metal) * ΔT(metal) = m(water) * c(water) * ΔT(water)
⇒ mass of the metal = 151.5 grams
⇒ c(metal) = TO BE DETERMINED
⇒ΔT( metal) = T2 - T1 = 18.7 °C - 75.0 °C = -56.3 °C
⇒ mass of the water = 151.5 grams
⇒ c(water) = 4.184 J/g°C
⇒ ΔT(water) = 18.7° - 15.1 = 3.6 °C
151.5g * c(metal) * -56.3°C = 151.5g * 4.184 J/g°C * 3.6 °C
c(metal) = 0.268 J/g°C
The specific heat capacity of the metal is 0.268 J/g°C
Hello.
The answer is: D it produces hyrogen ions in a solution.
This is correct because when Arrhenius acid it turns into hydrogen ions.substance as an acid if it produces hydrogen ions H(+) or hydronium ions in water. A substance is classified as a base if it produces hydroxide ions OH(-) in water.
have a nice day