Answer:
The correct answer is "They are both located in the nucleus".
Explanation:
I had to look for the problem and found that the particles are a Proton and a Neutron.
The atomic nucleus is the central section of an atom, is positively charged and has almost the entire mass of the atom.
The nucleus is formed by protons and neutrons, which are held together by strong nuclear interaction, which allows the nucleus to be stable.
Have a nice day!
Answer:
1.5 × 10⁻¹¹ M
Explanation:
Step 1: Given data
- Concentration of OH⁻ ([OH⁻]): 6.6 × 10⁻⁴ M
- Concentration of H⁺ ([H⁺]): ?
Step 2: Consider the self-ionization of water
H₂O(l) ⇄ H⁺(aq) + OH⁻(aq)
Step 3: Calculate the molar concentration of H⁺
We will use the equilibrium constant for the self-ionization of water (Kw).
Kw = 1.0 × 10⁻¹⁴ = [H⁺] × [OH⁻]
[H⁺] = 1.0 × 10⁻¹⁴ / [OH⁻]
[H⁺] = 1.0 × 10⁻¹⁴ / 6.6 × 10⁻⁴
[H⁺] = 1.5 × 10⁻¹¹ M
<span> It is important to keep the NaOH solution covered at all time because sodium hydroxide is a very good remover of Carbon dioxide from the air means sodium hydroxide absorbs the carbon dioxide from the air react with that so the concentration of your solution will also change if you uncover the NaOH.
The following reaction occurs when sodium hydroxide reacts with carbon dioxide;
</span><span>2 NaOH(aq) + CO2(g) --> Na3CO3(aq) + H2O(l) </span>
Answer:
Increasing the temperature will cause chemical changes to occur faster. Decreasing the temperature, causes the particles to lose energy which causes them to move around less and slower. The less they move, the less collisions occur, and the less reactions occur between the chemicals = slower reaction rate.
Explanation: