For the purpose of proper representation in this item, we let the number of moles of carbon in the compound be x, that of H is y. The equation of toluene now becomes,
CxHy
The combustion reaction is,
CxHy + O2 --> CO2 + H2O
The equation presented above may not be balanced yet. Then, we determine the number of mmols of C, H, and O in the product using the given masses.
(1) 8.20 mg CO2
(8.2 mg CO2)(1 mmol CO2/44 mg CO2) = 0.186 mmol CO2
which means,
0.186 mmol C
0.373 mmol O
(2) 1.92 mg H2O
(1.92 mg H2O)(1 mmol H2O/18 mg H2O) = 0.107 mmol H2O
which means
0.2133 mmol H
0.107 mmol O
Thus, the equation for toluene is,
C(0.186)H(0.2133)
Dividing the numbers by the lesser value,
CH(8/7)
To eliminate the fraction, we multiply by the denominator. Thus, the final answer would be,
<em> C7H8</em>
Answer:
Explanation:
According to legend, Galileo dropped weights off of the Leaning Tower of Pisa, showing that gravity causes objects of different masses to fall with the same acceleration. In recent years, researchers have taken to replicating this test in a way that the Italian scientist probably never envisioned — by dropping atoms. One of Galileo's contributions to the founding of modern science was his study of falling objects. He turned, then, to measuring the acceleration of objects rolling down smooth ramps. The ramp "diluted" the acceleration to a value small enough to allow accurate measurements of the longer time intervals.
Answer:
im not completely sure but the mst likely answer would be the would be they have the same density
Explanation:
if two mixture have the same ingriedients their most likely going to have the same density depending of the measurements like when baking a cake when you add your wet ingriedients to your dry one it makes a batter and if you were to make another mixture with the same ingriedients and somewhat similar measurements your going to get a similar density
Answer:
134.8 mmHg is the vapor pressure for solution
Explanation:
We must apply the colligative property of lowering vapor pressure, which formula is: P° - P' = P° . Xm
P° → Vapor pressure of pure solvent
P' → Vapor pressure of solution
Xm → Mole fraction for solute
Let's determine the moles of solute and solvent
17.5 g . 1 mol/180 g = 0.0972 moles
82 g . 1mol / 32 g = 2.56 moles
Total moles → moles of solute + moles of solvent → 2.56 + 0.0972 = 2.6572 moles
Xm → moles of solute / total moles = 0.0972 / 2.6572 = 0.0365
We replace the data in the formula
140 mmHg - P' = 140 mmHg . 0.0365
P' = - (140 mmHg . 0.0365 - 140mmHg)
P' = 134.8 mmHg
4/325 = 2/unknown temperature
unknown temperature= 2/(4/325)=162.5k