When two atoms of Florine combines, they share an electron pair to complete it's octet. This result is formation of single bond between two fluorine atoms. This process is exothermic in nature, and hence, heat is liberated during the process of bond formation. <span />
Answer: K and Na
Explanation:
Potassium and Sodium have a chemical symbol of K and Na respectively.
They have similar chemical properties because both
- have only one valence electron,
- form univalent positive ion when they donate their lone outermost electron as shown below
Na --> Na+ + e-
K --> K+ + e-
- are good reducing agents
- react with cold water vigorously to liberate hydrogen gas and form alkalis, so they are known as alkali metals.
- K and Na are placed in Group 1 of the periodic table.
Thus, unlike the other pairs given, K and Na, have the most similar chemical properties
I think it is aluminum oxide
Most reasonable answer:
Observations and experimentation
Answer:
The answer to the question is
The pressure of carbon dioxide after equilibrium is reached the second time is 0.27 atm rounded to 2 significant digits
Explanation:
To solve the question, we note that the mole ratio of the constituent is proportional to their partial pressure
At the first trial the mixture contains
3.6 atm CO
1.2 atm H₂O (g)
Total pressure = 3.6+1.2= 4.8 atm
which gives
3.36 atm CO
0.96 atm H₂O (g)
0.24 atm H₂ (g)
That is
CO+H₂O→CO(g)+H₂ (g)
therefore the mixture contained
0.24 atm CO₂ and the total pressure =
3.36+0.96+0.24+0.24 = 4.8 atm
when an extra 1.8 atm of CO is added we get Increase in the mole fraction of CO we have one mole of CO produces one mole of H₂
At equilibrium we have 0.24*0.24/(3.36*0.96) = 0.017857
adding 1.8 atm CO gives 4.46 atm hence we have
(0.24+x)(0.24+x)/(4.46-x)(0.96-x) = 0.017857
which gives x = 0.031 atm or x = -0.6183 atm
Dealing with only the positive values we have the pressure of carbon dioxide = 0.24+0.03 = 0.27 atm