We can use Newton II here (where F=m*a), that F is the net (or resultant) force on the object, m is the mass of the object and a is the acceleration the object experiences.
This means, in this case there would be no friction and absolutely no other force which gives a component in the plane of motion, only then can you assume that F=804N.
Now using F= m*a
804 = 51.7*a
Therefore a = 804/51.7 = 15.55 m/s²
Answer:
factor that bug maximum KE change is 0.52284
Explanation:
given data
vertical distance = 6.5 cm
ripples decrease to = 4.7 cm
solution
We apply here formula for the KE of particle that executes the simple harmonic motion that is express as
KE = (0.5) × m × A² × ω² .................1
and kinetic energy is directly proportional to square of the amplitude.
so
.............2

= 0.52284
so factor that bug maximum KE change is 0.52284
Temperature is the measurement of the average energy of the particles in a solid, liquid or gas and thermal energy is the total energy in a set amount of solid, liquid or gas. Therefore, the temperature and thermal energy is not the same thing. They are both about the particle theory, which is a theory that all particles of solid, liquid or gas are always in motion. But the difference between the two is that temperature is the "measurement" of the particles in a solid, liquid or gas and the thermal energy is the total energy in a set amount of solid, liquid or gas.
Answer:
The water level rises more when the cube is located above the raft before submerging.
Explanation:
These kinds of problems are based on the principle of Archimedes, who says that by immersing a body in a volume of water, the initial water level will be increased, raising the water level. That is, the height in the container with water will rise in level. The difference between the new volume and the initial volume of the water will be the volume of the submerged body.
Now we have two moments when the steel cube is held by the raft and when it is at the bottom of the pool.
When the cube is at the bottom of the water we know that the volume will increase, and we can calculate this volume using the volume of the cube.
Vc = 0.45*0.45*0.45 = 0.0911 [m^3]
Now when a body floats it is because a balance is established in the densities, the density of the body and the density of the water.
![Ro_{H2O}=R_{c+r}\\where:\\Ro_{H2O}= water density = 1000 [kg/m^3]\\Ro_{c+r}= combined density cube + raft [kg/m^3]](https://tex.z-dn.net/?f=Ro_%7BH2O%7D%3DR_%7Bc%2Br%7D%5C%5Cwhere%3A%5C%5CRo_%7BH2O%7D%3D%20water%20density%20%3D%201000%20%5Bkg%2Fm%5E3%5D%5C%5CRo_%7Bc%2Br%7D%3D%20combined%20density%20cube%20%2B%20raft%20%5Bkg%2Fm%5E3%5D)
Density is given by:
Ro = m/V
where:
m= mass [kg]
V = volume [m^3]
The buoyancy force can be calculated using the following equation:
![F_{B}=W=Ro_{H20}*g*Vs\\W = (200+730)*9.81\\W=9123.3[N]\\\\9123=1000*9.81*Vs\\Vs = 0.93 [m^3]](https://tex.z-dn.net/?f=F_%7BB%7D%3DW%3DRo_%7BH20%7D%2Ag%2AVs%5C%5CW%20%3D%20%28200%2B730%29%2A9.81%5C%5CW%3D9123.3%5BN%5D%5C%5C%5C%5C9123%3D1000%2A9.81%2AVs%5C%5CVs%20%3D%200.93%20%5Bm%5E3%5D)
Vs > Vc, What it means is that the combined volume of the raft and the cube is greater than that of the cube at the bottom of the pool. Therefore the water level rises more when the cube is located above the raft before submerging.
The solubility of gases in liquids increases with the increase in pressure.