Answer:
<h2>3000 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 1000 × 3
We have the final answer as
<h3>3000 N</h3>
Hope this helps you
1. If we increase the distance to twice it's original value, the light intensity is reduced by one-fourth, the light intensity would be:
I0/4
2. rms magnetic field is inversely proportional to distance, so the new rms magnetic field would be:
B0/2
3. average energy density is inversely proportional to the square of the distance, so the new average energy density is:
E0/4
Answer:
1788.402 MJ
Explanation:
Work done = Force (N) x distance (m)
First we have to convert distance into metres:
173.8 x 1000 = 173,800 m
Then plug these values into the equation above:
173,800 x 10290 = 1788402000 J
The reason it's Joules (the unit for energy) is because work done = energy transferred
Now we have to convert Joules into Mega Joules:
1 J = 1/1000000 MJ
1788402000 J = 1788402000/ 1000000 = 1788.402 MJ
Answer:
7. (D) uniformly accelerated vertical motion
8. (A) zero
9. (A) zero
10. (C) parabolic