Explanation:
In order to find out if the keys will reach John or not, we can use the formula of projectile motion to find the maximum height reached by the keys:
H = V²Sin²θ/2g
where,
V = Launch Speed = 18 m/s
θ = Launch Angle = 40°
g = 9.8 m/s²
Therefore,
H = (18 m/s)²[Sin 40°]²/(2)(9.8 m/s²)
H = 6.83 m
Hence, the maximum height that can be reached by the projectile or the keys is greater than the height of John's Balcony(5.33 m).
Therefore, the keys will make it back to John.
Answer:
To describe motion accurately and completely, a frame of reference is necessary. frame of reference ( or reference frame) consists of an abstract coordinate system and the set of physical reference points that uniquely fix ( locate and orient ) the coordinate system and standardize measurements within that frame.
Explanation:
The different observations occur because the two observers are in different frames of reference. A frame of reference is a set of coordinates that can be used to determine positions and velocities of objects in that frame; different frames of reference move relative to one another.
Answer:
Total pressure exerted at bottom = 119785.71 N/m^2
Explanation:
given data:
volume of water in bottle = 150 L = 0.35 m^3
Area of bottle = 2 ft^2
density of water = 1000 kg/m
Absolute pressure on bottom of bottle will be sum of atmospheric pressure and pressure due to water
Pressure due to water P = F/A
F, force exerted by water = mg
m, mass of water = density * volume
= 1000*0.350 = 350 kg
F = 350*9.8 = 3430 N
A = 2 ft^2 = 0.1858 m^2
so, pressure P = 3430/ 0.1858 = 18460.71 N/m^2
Atmospheric pressure
At sea level atmospheric pressure is 101325 Pa
Total pressure exerted at bottom = 18460.71 + 101325 = 119785.71 N/m^2
Total pressure exerted at bottom = 119785.71 N/m^2