Answer:
28.28 L.
Explanation:
- We can use the general law of ideal gas: <em>PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- If n and T are constant, and have two different values of V and P:
<em>P₁V₁ = P₂V₂</em>
<em></em>
P₁ = 700.0 mm Hg, V₁ = 4.0 L.
at burst: P₂ = 99.0 mm Hg, V₂ = ??? L.
<em>∴ V₂ = P₁V₁/P₂</em> = (700.0 mm Hg)(4.0 L)/(99.0 mm Hg) = <em>28.28 L.</em>