Moles of solute does not change.
Answer:
0.2402 M
Explanation:
0.945 L sol contains = 0.227 moles
1 L sol will contain = (0.227/0.945)*1 = 0.2402 moles
Molarity = 0.2402 moles/L or M
F₂ + 2 NaI → 2 NaF + I₂
<span>It is given that F₂ is light yellow / colorless in hydrocarbon solvent. The student combines Fluorine water with NaI in water. Then student adds pentane in the mixture of F₂ and NaI. After dissolution, solution was observed and a colorless pentane layer was seen. Alkanes are unreactive in nature. The C-H bond in alkane is difficult to break. whereas, F₂ is very reactive and reacts vigorously with alkanes in presence of light by free radical mechanism.It is given that the color of the solution is nearly colorless. F₂ when present in hydrocarbon solvent is light yellow/ colorless/ nearly colorless. Hence, F₂ is not reacting with hydrocarbon and there is no reaction taking place (No F</span>₂ is present<span>)</span>
A simple way to go about this is that we look at the solubility curve, on the x axis we first look at the temperature and then the corresponding value of solute/100g H2O on the y axis, from the 4 curves above only NaNO3 has a curve that can accommodate 80g of salt at 40 without being Saturated since at 40 degrees it can accommodate 105g of salt to become completely Saturated.
Answer: -
The rate decreases as the concentration of the reactants decreases
Explanation: -
A reaction involves change of the reactants into products.
Initially there is only reactants. So the rate if reaction is high.
After some time there are products. So the amount of reactant is less.
Reactions involve collisions of reactant molecules. As the reactant amount decreases, collisions between the reactants decreases. As such the rate of reaction decreases with the progress of the reaction.