Answer:
The specific heat of iron is 0.45 J/g.°C
Explanation:
The amount of heat absorbed by the metal is given by:
heat = m x Sh x ΔT
From the data, we have:
heat = 180.8 J
mass = m = 22.44 g
ΔT = Final temperature - Initial temperature = 39.0°C - 21.1 °C = 17.9°C
Thus, we calculate the specific heat of iron (Sh) as follows:
Sh = heat/(m x ΔT) = (180.8 J)/(22.44 g x 17.9°C) = 0.45 J/g.°C
Since there is one mole of Ca^2+ in calcium acetate, its concentration is 0.80 mol/L.
<h3>What is concentration?</h3>
The term concentration has to do with the amount of substance in solution. The concentration can be measured in several units. Generally, concentration is expressed in molarity, molality, mass concentration units or percentage.
Now we are asked to find the amount concentration of calcium ions and acetate ions in a 0.80 mol/L solution of calcium acetate. The formula of calcium acetate is Ca(CH3COO)2.
Thus;
Ca(CH3COO)2(aq) ----> Ca^2+(aq) + 2CH3COO^-(aq)
It then follows that since there is one mole of Ca^2+ in calcium acetate, its concentration is 0.80 mol/L.
Learn more about concentration:brainly.com/question/10725862
#SPJ1
Answer:
a. slows diffusion
Explanation:
Gas exchange on respiratory surfaces in the body (the lungs) occurs through a process known as diffusion. Blood which is low in oxygen and high in carbondioxide (carried from cells) goes through an exchange in the lung's alveoli (where oxygen concentration is high and carbondioxide is low). The oxygen in the alveoli diffuses into the blood, while the carbondioxide in the blood diffuses into the alveoli. This diffusion is possible because of the concentration gradient across the membranes.
Pneumonia is the inflammation of the lungs due to injury or infection. Liquid (pus) accumulates in the alveoli (a natural immune response to the infection or injury), a condition known as pulmonary edema which makes it harder for gases to be exchanged between the blood and the alveoli, thereby making breathing difficult. This slows down diffusion and if the condition is severe enough, can cause a respiratory failure where oxygen levels in the blood are critically low and carbondioxide levels are very high.
In a reduction-oxidation or better known as REDOX reaction, the substance that reduces the oxidation state is known as the substance that is REDUCED. It serves as the oxidizing agent. Thus, Au3+ in this number is considered as the oxidizing agent.