Answer:
The answer cannot be determined.
Explanation:
The energy of the diver when he hits the pool will be equal to its potential energy
, and for the temperature of the pool to rise up, this energy has to be converted into the heat energy of the pool.
The change in temperature
then will be

Where m is the mass of water in the pool, c is the specific heat capacity of water, and
is the added heat which in this case is the energy of the diver.
Since we do not know the mass of the water in the pool, we cannot make this calculation.
Answer:
<em>The final speed of the second package is twice as much as the final speed of the first package.</em>
Explanation:
<u>Free Fall Motion</u>
If an object is dropped in the air, it starts a vertical movement with an acceleration equal to g=9.8 m/s^2. The speed of the object after a time t is:

And the distance traveled downwards is:

If we know the height at which the object was dropped, we can calculate the time it takes to reach the ground by solving the last equation for t:

Replacing into the first equation:

Rationalizing:

Let's call v1 the final speed of the package dropped from a height H. Thus:

Let v2 be the final speed of the package dropped from a height 4H. Thus:

Taking out the square root of 4:

Dividing v2/v1 we can compare the final speeds:

Simplifying:

The final speed of the second package is twice as much as the final speed of the first package.
Answer:
A) A warm wire
Explanation:
A warm wire has the most resistance. Heating the metal wire causes atoms to vibrate more, which in turn makes it more difficult for the electrons to flow, increasing resistance. Heating the wire increases resistivity.
The concept needed to solve this problem is average power dissipated by a wave on a string. This expression ca be defined as

Here,
= Linear mass density of the string
Angular frequency of the wave on the string
A = Amplitude of the wave
v = Speed of the wave
At the same time each of this terms have its own definition, i.e,
Here T is the Period
For the linear mass density we have that

And the angular frequency can be written as

Replacing this terms and the first equation we have that



PART A ) Replacing our values here we have that


PART B) The new amplitude A' that is half ot the wavelength of the wave is


Replacing at the equation of power we have that


I think b support body weight