Explanation:
Modeling crustal deformation is a very important process that helps to study plate interaction that clearly can be used to predict the likelihood of an earthquake.
Earthquake is a sudden displacement or movement with the earth that transmits elastic energy.
- Earthquakes can have shallow or deep focus depending on their location and the terrain.
- Movement on the earth are mostly noticeable along plate margins.
- This results in a world-wide movement of the broken slabs of the earth moving on the weak asthenosphere.
- It is impossible to go deep within the lithosphere to identify unstable earth.
- The uneven distribution of stress is very important in this process.
- As plate moves, the lithosphere deforms creating stresses in some area and relieving other places of stress.
- Continuous collection of stress data using strain mapping gives important parameters that can be modeled.
- Areas with high amount of stress and more movement have the highest tendency of producing earthquakes.
- A computer model is used to carry out this prediction.
- Some other factors contributes to the rapid movement but stress are by far the most important of all.
- By this, we can easily and readily hypothesize the causes of an earthquake and possible measures to mitigate it.
learn more;
Earthquake brainly.com/question/6520403
#learnwithBrainly
When ice cream melts from solid to liquid, the motion of the molecules increases. This is because as the phase change moves from solid to liquid to gas, entropy increases which increases the probability of the molecules to collide and move in the system. This increase may be because of the increase in temp, probable cause of the melting of icecream.
Since the scientists found a fossil from a modern day badger from the Holocene geologic epoch, the badger would be mostly the same, as this is the most recent, and still on going geologic epoch, starting from little less than 12,000 years ago. If the scientist wants to find a fossilized remains of earlier badgers, thus of their ancestors from the Pleistocene epoch, than the scientist should dig deeper. Not a lot deeper though, as the layers of rock from the Pleistocene are just bellow the layers of rock from the Holocene, as the Pleistocene is the second youngest geologic epoch, being the predecessor of the Holocene.
Temperature is a measure of the average kinetic energy of the particles in a substance. It is the kinetic energy of a typical particle. Temperature is a measure of the average kinetic energy of the particles. in a substance.
Answer:
0.32M
Explanation:
<u>Step 1:</u> Balance the reaction
K2CO3 + Ba(NO3)2 ⇔ KNO3 + BaCO3
We have a 20 mL 0.2 M K2CO3 and a 30mL 0.4M Ba(NO3)2 solution
SinceK2CO3 is the limiting reactant, there will remain Ba(NO3)2 after it's consumed and produced KNO3 + BaCO3
<u>Step 2: </u>Calculate concentration
To find the concentration of the barium cation we use the following equation:
Concentration = moles of the <u>solute</u> / volumen of the <u>solution</u>
<u />
<u>[Ba2+] </u> = (20 * 10^-3 * 0.2M + 30 * 10^-3 * 0.4M) / ( 20 + 30mL) *10^-3
[Ba2+] = 0.32 M
The concentration of Barium ion in solution is 0.32 M