Answer:
In the explanation
Step-by-step explanation:
Going to start with the sum identities
sin(x+y)=sin(x)cos(y)+sin(y)cos(x)
cos(x+y)=cos(x)cos(y)-sin(x)sin(y)
sin(x)cos(x+y)=sin(x)cos(x)cos(y)-sin(x)sin(x)sin(y)
cos(x)sin(x+y)=cos(x)sin(x)cos(y)+cos(x)sin(y)cos(x)
Now we are going to take the line there and subtract the line before it from it.
I do also notice that column 1 have cos(y)cos(x)sin(x) in common while column 2 has sin(y) in common.
cos(x)sin(x+y)-sin(x)cos(x+y)
=0+sin(y)[cos^2(x)+sin^2(x)]
=sin(y)(1)
=sin(y)
Answer:
the kit can produce 99*89*105*74 = 68,461,470 faces
Step-by-step explanation:
Hope this helps : )
Answer:
The correct answer is "rational" . It is not an "integer" because it is a "decimal value". It is not "irrational" because the decimal value terminates and does not repeat.
Answer:
a - b2
Step-by-step explanation:
STEP 1
:
Trying to factor as a Difference of Squares:
1.1 Factoring: a-b2
Theory : A difference of two perfect squares, A2 - B2 can be factored into (A+B) • (A-B)
Proof : (A+B) • (A-B) =
A2 - AB + BA - B2 =
A2 - AB + AB - B2 =
A2 - B2
Note : AB = BA is the commutative property of multiplication.
Note : - AB + AB equals zero and is therefore eliminated from the expression.
Check : a1 is not a square !!
Ruling : Binomial can not be factored as the difference of two perfect squares
Final result :
a - b2
<u><em>HOPE THIS HELPS!</em></u>
<u><em>PLEASE MARK BRAINLIEST! :)</em></u>
<h3>
♫ - - - - - - - - - - - - - - - ~<u>
Hello There</u>
!~ - - - - - - - - - - - - - - - ♫</h3>
➷ It would be option A (top left figure.)
<h3><u>
✽</u></h3>
➶ Hope This Helps You!
➶ Good Luck (:
➶ Have A Great Day ^-^
↬ ʜᴀɴɴᴀʜ ♡