The answer to your question is -36
<span>An equation is a statement of equality „=‟ between two expression for particular</span>values of the variable. For example5x + 6 = 2, x is the variable (unknown)The equations can be divided into the following two kinds:Conditional Equation:<span>It is an equation in which two algebraic expressions are equal for particular</span>value/s of the variable e.g.,<span>a) 2x <span>= <span>3 <span>is <span>true <span>only <span>for <span>x <span>= 3/2</span></span></span></span></span></span></span></span></span><span> b) x</span>2 + x – <span> 6 = 0 is true only for x = 2, -3</span> Note: for simplicity a conditional equation is called an equation.Identity:<span>It is an equation which holds good for all value of the variable e.g;</span><span>a) (a <span>+ <span>b) x</span></span></span><span>ax + bx is an identity and its two sides are equal for all values of x.</span><span> b) (x + 3) (x + 4)</span> x2<span> + 7x + 12 is also an identity which is true for all values of x.</span>For convenience, the symbol „=‟ shall be used both for equation and identity. <span>1.2 Degree <span>of <span>an Equation:</span></span></span>The degree of an equation is the highest sum of powers of the variables in one of theterm of the equation. For example<span>2x <span>+ <span>5 <span>= <span>0 1</span></span></span></span></span>st degree equation in single variable<span>3x <span>+ <span>7y <span>= <span>8 1</span></span></span></span></span>st degree equation in two variables2x2 – <span> <span>7x <span>+ <span>8 <span>= <span>0 2</span></span></span></span></span></span>nd degree equation in single variable2xy – <span> <span>7x <span>+ <span>3y <span>= <span>2 2</span></span></span></span></span></span>nd degree equation in two variablesx3 – 2x2<span> + <span>7x + <span>4 = <span>0 3</span></span></span></span>rd degree equation in single variablex2<span>y <span>+ <span>xy <span>+ <span>x <span>= <span>2 3</span></span></span></span></span></span></span>rd degree equation in two variables<span>1.3 Polynomial <span>Equation <span>of <span>Degree n:</span></span></span></span>An equation of the formanxn + an-1xn-1 + ---------------- + a3x3 + a2x2 + a1x + a0<span> = 0--------------(1)</span>Where n is a non-negative integer and an<span>, a</span>n-1, -------------, a3<span>, a</span>2<span>, a</span>1<span>, a</span>0 are realconstants, is called polynomial equation of degree n. Note that the degree of theequation in the single variable is the highest power of x which appear in the equation.Thus3x4 + 2x3 + 7 = 0x4 + x3 + x2<span> <span>+ <span>x <span>+ <span>1 <span>= <span>0 , x</span></span></span></span></span></span></span>4 = 0<span>are <span>all <span>fourth-degree polynomial equations.</span></span></span>By the techniques of higher mathematics, it may be shown that nth degree equation ofthe form (1) has exactly n solutions (roots). These roots may be real, complex or amixture of both. Further it may be shown that if such an equation has complex roots,they occur in pairs of conjugates complex numbers. In other words it cannot have anodd number of complex roots.<span>A number <span>of the <span>roots may <span>be equal. Thus <span>all four <span>roots of x</span></span></span></span></span></span>4 = 0<span>are <span>equal <span>which <span>are <span>zero, <span>and <span>the <span>four <span>roots <span>of x</span></span></span></span></span></span></span></span></span></span>4 – 2x2 + 1 = 0<span>Comprise two pairs of equal roots (1, 1, -1, -1)</span>
Answer:
All numbers except 1
Step-by-step explanation:
The graph has an asymptote at 1.
So the function will grow toward but without reaching it.
The equation of the asymptote is x=1
So the domain is all real numbers except 1.
<span>So we want to know the new coordinates for the vertex A'(x,y) if we know that the vertex A is at A(-1,2) and vertex B is at B(1,5) and that the triangle ABC is translated 6 units up and 3 units left. So the method is simply to add units 6 to x and 3 to y of A to get A'. Going left means we need to go to negative x direction and going up means we need to go to positive y direction. So: A'(-1-3,2+6) and that is: A'(-4,8). </span>