If we were to make room for errors, there should really be no limiting reagent because practically all of both Nitrogen and Hydrogen is used up during this reaction. If this values were actually exact, then Nitrogen would be the limiting reagent, but a very very little amount of Nitogen is needed for all the Hydrogen to react.
We solve this problem by first writing the equation
N2 + 3H2 = 2NH3
N2 = 14g*2 = 28g, 3H2 = 3(1*2) = 6g
so 28g of Nitrogen needs 6g of Hydrogen for this reaction. Thus if we had 10.67g of Hydrogen in the reaction, 6g*49.84g/28g of hydrogen is needed to react = 10.68g of Hydrogen, but since we have 10.7g of it thus it is excess and thus the limiting reagent has to be Nitrogen, but notice that 10.68g and 10.7g are practically the same, so there might actually not be a limiting reagent. Using the other value(10.7), the amount of Nitrogen required would be 10.7g*28g/6g = 49.93, and since this is slightly more than the 49.84g we have, this confirms that Nitrogen is the limiting reagent. But note still that since this values are really close, there is a possibility that there is neither a limiting nor an excess reagent
Answer:
The answer would be C). All of the elements inside a period will always have the same amount of shells. Hope this helps!
Nascent oxygen has much higher reactivity than the oxygen bubbled through the reaction mixture. It doesn't stay nascent for long (you are right about it being converted quick to just O2), which is why it has to be generated in situ
Answer:
Ionic or Electrovalent Bonding
Explanation:
There are primarily two categories of bonding between chemical entities. We have; Ionic Bonding and Covalent Bonding.
Ionic bonding or electrovalent bonding is the complete transfer of valence electron(s) between atoms. There is the transfer of electron from typically a metal to a non metal.
Covalent Bonding however involves the sharing of electrons between atoms. Depending on whuch atoms provide the electrons, it can be ordinary covalent oor coordinate covelent bond.