Answer:
B₂
Explanation:
The limiting reactant is always a reactant. You can determine which reactant is limiting by identifying which has the smaller mole-to-mole ratio with the product. This ratio can be found via the coefficients of the balanced reaction.
4 A₂ + 3 B₂ ---> 6 AB
4 moles A₂
------------------ = mole-to-mole ratio A₂/AB
6 moles AB
3 moles B₂
------------------ = mole-to-mole ratio B₂/AB
6 moles AB
Since the mole-to-mole ratio between B₂ and AB is smaller, B₂ must be the limiting reactant.
Answer:
The answer is
<h2>126.58 mL</h2>
Explanation:
The volume of a substance when given the density and mass can be found by using the formula
<h3>

</h3>
From the question
mass of alcohol = 100 g
density = 0.79 g/mL
The volume is

We have the final answer as
<h3>126.58 mL</h3>
Hope this helps you
Ka is the acid dissociation equilibrium constant. The larger the value of the Ka, the stronger is the acid. To find Ka from pKa, the equation is:
pKa = -log[Ka]
@pKa = 7
7 = -log[Ka]
Ka = 1×10⁻⁷
@pKa = 10
10 = -log[Ka]
Ka = 1×10⁻¹⁰
This, pKa 7 is more acidic than pKa 10. The scale factor would be:
1×10⁻⁷/1×10⁻¹⁰ = 1,000
<em>Therefore, Compound A is 1,000 times more acidic than Compound B.</em>
Answer:
2 AgNO₃(aq) + Ca(BrO₃)₂(aq) ⇒ Ca(NO₃)₂(aq) + 2 AgBrO₃(s)
2 Ag⁺(aq) + 2 NO₃⁻(aq) + Ca²⁺(aq) + 2 BrO₃⁻(aq) ⇒ Ca²⁺(aq) + 2 NO₃⁻(aq) + 2 AgBrO₃(s)
2 Ag⁺(aq) + 2 BrO₃⁻(aq) ⇒ 2 AgBrO₃(s)
Explanation:
The question is missing but I think it must be about the chemical equations.
Let's consider the molecular equation that occurs when a solution of silver nitrate and a solution of calcium bromate react.
2 AgNO₃(aq) + Ca(BrO₃)₂(aq) ⇒ Ca(NO₃)₂(aq) + 2 AgBrO₃(s)
The complete ionic equation includes all the ions and the insoluble species.
2 Ag⁺(aq) + 2 NO₃⁻(aq) + Ca²⁺(aq) + 2 BrO₃⁻(aq) ⇒ Ca²⁺(aq) + 2 NO₃⁻(aq) + 2 AgBrO₃(s)
The net ionic equation includes only the ions that participate in the reaction and the insoluble species.
2 Ag⁺(aq) + 2 BrO₃⁻(aq) ⇒ 2 AgBrO₃(s)