Answer:
P₂ = 0.09 atm
Explanation:
According to general gas equation:
P₁V₁/T₁ = P₂V₂/T₂
Given data:
Initial volume = 0.225 L
Initial pressure = 338 mmHg (338/760 =0.445 atm)
Initial temperature = 72 °C (72 +273 = 345 K)
Final temperature = -15°C (-15+273 = 258 K)
Final volume = 1.50 L
Final pressure = ?
Solution:
P₁V₁/T₁ = P₂V₂/T₂
P₂ = P₁V₁ T₂/ T₁ V₂
P₂ = 0.445 atm × 0.225 L × 258 K / 345 K × 1.50 L
P₂ = 25.83 atm .L. K / 293 K . L
P₂ = 0.09 atm
We are given the base dissociation constant, Kb, for Pyridine (C5H5N) which is 1.4x10^-9. The acid dissociation constant, Ka for the Pyridium ion or the conjugate acid of Pyridine is to be determined. We know from our chemistry classes that:
Kw = Kb * Ka
where Kw is always equal to 1x10^-14
so, to solve for Ka of Pyridium ion, substitute Kb to the equation together with Kw and solve for Ka:
1x10^-14 = 1.4x10^-9 * Ka
solve for Ka
Ka = 7.14x10^-6
Therefore, the acid dissociation constant of Pyridinium ion is 7.14x10^-6.
<span />
C3H8 + 5O2 -----> 3CO2 + 4H2O
This is propane burning in air or pure oxygen.
The electrons will move more rapidly resulting in a higher pressure even at a consistent volume