Answer:
Explanation:
The fish is initially at rest and it is also at rest when the spring is fully stretched at the maximum distance.
Change in gravity potential energy = change in spring potential energy
mgh = 1/2kh^2
Assume gravity constant g is 10m/s^2
2.6*10*h = 1/2*200*h^2
100h^2 - 26h = 0
2h(50h - 13) = 0
h = 0 or h = 13/50 = 0.65m
h = 0 is before the spring is stretched
So the maximum distance is 0.65m.
Explanation:
In order to find out if the keys will reach John or not, we can use the formula of projectile motion to find the maximum height reached by the keys:
H = V²Sin²θ/2g
where,
V = Launch Speed = 18 m/s
θ = Launch Angle = 40°
g = 9.8 m/s²
Therefore,
H = (18 m/s)²[Sin 40°]²/(2)(9.8 m/s²)
H = 6.83 m
Hence, the maximum height that can be reached by the projectile or the keys is greater than the height of John's Balcony(5.33 m).
Therefore, the keys will make it back to John.
Answer:à
Explanation:waves carry energy in the direction in which they move
Answer:
C. 32.7%
Explanation:
% composition = ( mass S / mass H2SO4 ) × 100 = 32.08/ 98.10 × 100 = 32.7 % pls mark brainliest
The speed of the sound in the xenon is 178 m/s. And the right option is b 178 m/s
<h3 /><h3>What is speed?</h3>
Speed can be defined as the ratio of the total distance traveled by a body to the total time taken.
To calculate the speed of the sound in the xenon, we use the formula below.
Formula:
- v = λf............. Equation 1
Where:
- v = Speed of the sound in xenon
- f = Frequency
- λ = Wavelength.
From the question,
Given:
- f = 440 Hz
- λ = 40.4 cm = 0.404 m
Substitute the values above into equation 1
- v = 440(0.404)
- v = 177.76 m/s.
- v ≈ 178 m/s
Hence, The speed of the sound in the xenon is 178 m/s. And the right option is b 178 m/s
Learn more about speed here: brainly.com/question/4931057