Answer:
a) V = -0.227 mV
b) V = -0.5169 mV
Explanation:
a)
Inside a sphere with a uniformly distributed charge density, electric field is radial and has a magnitude
E = (qr) / (4πε₀R³)
As we know that
V = -
By solving above equation, we get
V = (-qr²) / (8πε₀R³)
When
R = 1.81 cm
r = 1.2 cm
q = +2.80 fC
ε₀ = 8.85 × 10⁻¹²
V = (-2.80 × 10⁻¹⁵ × (1.2 × 10⁻²)²) / (8 × 3.14 × 8.85 × 10⁻¹² × (1.81 × 10⁻²)³)
V = -2.27 × 10⁻⁴ V
V = -0.227 mV
b)
When
r = R
R = 1.81 cm
q = +2.80 fC
ε₀ = 8.85 × 10⁻¹²
V = (-qR²) / (8πε₀R³)
V = (-q) / (8πε₀R)
V = (-2.80 × 10⁻¹⁵) / (8 × 3.14 × 8.85 × 10⁻¹² × (1.81 × 10⁻²))
V = -5.169 × 10⁻⁴ V
V = -0.5169 mV
Answer:
I think the answer is C. for 4. and then B. for 5.
When Object is at zero height, and there is no potential energy possess by the object then it exerts Greatest Kinetic energy in it's whole Journey
Hope this helps!
Answer:

Explanation:
The work (W) done by the gas can be calculated using the following equation:

<u>Where:</u>
p: is the pressure
[tex}V_{f}[/tex]: is the final volume
[tex}V_{i}[/tex]: is the initial volume
In the first process, the work done by the gas is:

Since the volume remains constant, the total work done by the gas is equal to zero.
In the second process, the work done by the gas is:
Now, the total work done by the gas during both processes is:

Therefore, the total work done by the gas during both processes is - 24 kJ.
I hope it helps you!
Answer:
Increase
Explanation:
because it's increasing up.