Answer:
the mechanical advantage David had when using the pulley is 2.
Explanation:
Given;
load moved by David, L = 350 N
effort applied by David, E = 175 N
The mechanical advantage David had when using the pulley is calculated as;

Therefore, the mechanical advantage David had when using the pulley is 2.
Answer:
<em>clockwise</em>
<em></em>
Explanation:
when current flows through a ring in a clockwise direction, it produces the equivalent magnetic effect of a southern pole of a magnet on the coil.
Since the current is decreasing, there is a flux change on the lower ring; generating an induced current on the lower ring. According to Lenz law of electromagnetic induction, "the induced current will act in such a way as to oppose the motion or the action producing it". In this case, the induced current will have to be the same polarity to the polarity of the current change producing it so as to repel the two rings far enough to stop the electromagnetic induction. The induced current will then be in the clockwise direction on the lower ring.
Answer:
As the temperature increases, the average kinetic energy increases as does the velocity of the gas particles hitting the walls of the container
Explanation:
Answer:
f = v / 4L
the frequency of the instruments is reduced by the decrease in the speed of the wave with the temperature.
Explanation:
In wind instruments the wave speed must meet
v = λ f
λ = v / f
from v is the speed of sound that depends on the temperature
v = v₀
where I saw the speed of sound at 0ºC v₀ = 331 m/s the temperature is in degrees centigrade, we can take the degrees Fahrenheit to centigrade with the relation
(F -32) 5/9 = C
76ºF = 24.4ºC
45ºF = 7.2ºC
With this relationship we can see that the speed of sound is significantly reduced when leaving the house to the outside
at T₁ = 24ºC v₁ = 342.9 m / s
at T₂ = 7ºC v₂ = 339.7 m / s
To satisfy this speed the wavelength of the sound must be reduced, so the resonant frequencies change
λ / 4 = L
λ= 4L
v / f = 4L
f = v / 4L
Therefore, the frequency of the instruments is reduced by the decrease in the speed of the wave with the temperature.