The universe is 13.8 billion years old.
Answer: for 1 is number 1
and for 2 is 3
Explanation:
Answer:
The Acceleration will increase
Explanation:
Newton's Second Law of motion: It states that the rate of change of momentum is directly proportional to the applied force and takes places along the direction of the force.
It can be expressed mathematically as,
F ∝ m(v-u)/t
Where (v-u)/t = a
F = kma.
F = force, m = mass of the body, a = acceleration, k = constant of proportionality which tend to unity for a unit force, a unit mass, and a unit acceleration.
Therefore,
F = ma.
From the equation above,
If the net force acting on a body increase, while the mass of the body remains constant, the acceleration will also increase.
Answer:

Explanation:
From the question we are told that:
Mass 
Velocity 
Angular Velocity 
Generally the equation for Kinetic Energy is mathematically given by



Answer:
Energy Lost for group A's car = 0.687 J
Energy Lost for group B's car = 0.55 J
Explanation:
The exact question is as follows :
Given - The energy of an object can be converted to heat due to the friction of the car on the hill. The difference between the potential energy of the car and its kinetic energy at the bottom of the hill equals the energy lost due to friction.
To find - How much energy is lost due to heat for group A's car ?
How much for Group B's car ?
Solution -
We know that,
GPE = 1 Joule (Potential Energy)
Now,
For Group A -
Energy Lost = GPE - KE
= 1 J - 0.313 J
= 0.687 J
So,
Energy Lost for group A's car = 0.687 J
Now,
For Group B -
Energy Lost = GPE - KE
= 1 J - 0.45 J
= 0.55 J
So,
Energy Lost for group B's car = 0.55 J