An excited atom can return to its ground state by absorbing electromagnetic radiation is false about the electromagnetic radiation.
Option B
<u>Explanation</u>:
In the scope of modern quantum theory, the term Electromagnetic radiation is identified as the movement of photons through space. Almost all the sources of energy that we utilize today such as coal, oil, etc are a product of electromagnetic radiation which was absorbed from the sun millions of years ago.
Various properties of electromagnetic radiations are a directly proportional relationship between the energy and the frequency, Inverse proportionality between frequency and the wavelength, etc. Hence, we can conclude that an "excited atom" can never return to its ground state by assimilating electromagnetic radiation and the 2nd statement is false.
I'm pretty sure it's the neutron star.
Answer:
<h3>Anything with a dark shade in color and with no reflective surface or any metal</h3>
Explanation:
In this case, a dark shirt or blanket would be a heat conductor as well as metal would be, too
Answer:
The maximum height could be 10.6 meters.
Explanation:
For this kind of exercise, we use the general principle for conservation of mechanical energy (E) that states:
(1)
That means the mechanical energy an object has on a point 2 should be equal to the mechanical energy on a point 1 plus the energy transformed into heat due friction denoted as Wf (It is negative because is lost). In our case point 1 is the point where the roller coaster begins and point 2 is at the second hill. Tola mechanical energy is the sum of potential gravitational energy and kinetic energy, so (1) is :
with K the kinetic energy and U the potential energy, remember potential energy is mgh and kinetic energy is
with m the mass, v the velocity and h the height, then:
Solving for h_2:

