Answer:
19.3m/s
Explanation:
Use third equation of motion

where v is the velocity at halfway, u is the initial velocity, g is gravity (9.81m/s^2) and h is the height at which you'd want to find the velocity
insert values to get answer
![v^2-0^2=2(9.81m/s^2)(38/2)\\v^2=9.81m/s^2 *38\\v^2=372.78\\v=\sqrt[]{372.78} \\v=19.3m/s](https://tex.z-dn.net/?f=v%5E2-0%5E2%3D2%289.81m%2Fs%5E2%29%2838%2F2%29%5C%5Cv%5E2%3D9.81m%2Fs%5E2%20%2A38%5C%5Cv%5E2%3D372.78%5C%5Cv%3D%5Csqrt%5B%5D%7B372.78%7D%20%5C%5Cv%3D19.3m%2Fs)
What is the longest the bolt can be and still be acceptable
Answer:
6 m/s is the missing final velocity
Explanation:
From the data table we extract that there were two objects (X and Y) that underwent an inelastic collision, moving together after the collision as a new object with mass equal the addition of the two original masses, and a new velocity which is the unknown in the problem).
Object X had a mass of 300 kg, while object Y had a mass of 100 kg.
Object's X initial velocity was positive (let's imagine it on a horizontal axis pointing to the right) of 10 m/s. Object Y had a negative velocity (imagine it as pointing to the left on the horizontal axis) of -6 m/s.
We can solve for the unknown, using conservation of momentum in the collision: Initial total momentum = Final total momentum (where momentum is defined as the product of the mass of the object times its velocity.
In numbers, and calling
the initial momentum of object X and
the initial momentum of object Y, we can derive the total initial momentum of the system: 
Since in the collision there is conservation of the total momentum, this initial quantity should equal the quantity for the final mometum of the stack together system (that has a total mass of 400 kg):
Final momentum of the system: 
We then set the equality of the momenta (total initial equals final) and proceed to solve the equation for the unknown(final velocity of the system):
