Answer: 8.691 mols of CO₂
Explanation:
To find the number of moles in a given grams, you want to use the molar mass.
Let's first find the molar mass of CO₂.
Carbon's molar mass is 12.011 g/mol
Oxygen's molar mass is 15.999 g/mol
To find molar mass of CO₂, we want to add up the molar mass of carbon and oxygen. Remember, there are 2 Oxygens so we need to mulitply that by 2.
12.011+2(15.999)=44.009 g/mol
Now that we have molar mass, we can convert 382.5 g to mols.

There are about 8.691 mols of CO₂.
First its ... higher energy of reactants , higher energy of products & you do the same with the lower ones than you do transition state
The heat transfer just occurred is mainly conduction.
Conduction happens when two objects are in contact with each other. In the hotter object, the molecules and/or free electrons have a higher kinetic energy, thus they'll travel and collide into other molecules, resulting in spreading the energy to the other object.
The heat transfer happens until thermal equilibrium, where both objects have the same temperature and their molecules have the same kinetic energy rate.
In addition, radiation is also happening since everything that has a higher temperature than the environment is a net emitter. They release electromagnetic waves that turn out to be radiation. These occur even without the presence of air.
Answer:
The quantity of ascorbic acid found in sweet lime of 49.6 mg does not meet the daily requirement.
Explanation:
To determine the mass of ascorbic acid knowing the number of moles we use the following formula:
number of moles = mass / molecular weight
mass = number of moles × molecular weight
mass of ascorbic acid = 2.82 × 10⁻⁴ × 176
mass of ascorbic acid = 496 × 10⁻⁴ g = 0.0496 g = 49.6 mg
daily requirement of ascorbic acid = 70 - 90 mg
The quantity of ascorbic acid found in sweet lime of 49.6 mg does not meet the daily requirement.
Answer:
D
Explanation:
the production of an odor would indicate that the heat ignited a chemical reaction