Answer:
Explanation:
-The Atomic Radius of an element is the distance between the center of an atom
-nucleus and its outermost, or valence electrons. ... These changes are caused by the interaction between the positive charge of the protons
- nucleus and the negative charge of all the atom's electrons.
<u>Given:</u>
Surface area at the narrow end, A1 = 5.00 cm2
Force applied at the narrow end, F1 = 81.0 N
Surface area at the wide end, A2 = 725 cm2
<u>To determine:</u>
Force F2 applied at the wide end
<u>Explanation:</u>
Use the relation
F1/A1 = F2/A2
F2 = F1*A2/A1 = 81.0 N * 725 cm2/5.00 cm2 = 11,745 N
Ans: (b)
The force applied at the wide end = 11,745 N
The second one should be correct
Answer:
The correct answer is 0.67 g H₂
Explanation:
Isopropyl alcohol (C₃H₇OH) can decompose to give acetone (C₂H₆OH) and hydrogen gas (H₂) according to the following chemical equation:
C₃H₇OH (g) ⇒ C₂H₆CO(g) + H₂(g)
We can calculate the initial mass of isopropyl alcohol from the density and volume data:
density = m/V = 0.785 g/mL
⇒ m = density x V = 0.785 g/mL x 25.6 mL = 20.096 g C₃H₇OH
According to the chemical equation 1 mol of C₃H₇OH gives 1 mol H₂. The molar mass of C₃H₇OH is:
molar mass C₃H₇OH = (12 g/mol x 3) + (1 g/mol x 7) + 16 g/mol + 1 g/mol = 60 g/mol
molar mass H₂ = 1 g/mol x 2 = 2 g/mol
So, we obtain: 2 g H₂ from 60 g C₃H₇OH. We multiply this stoichiometric ratio (2 g H₂/60 g C₃H₇OH) by the initial mass of C₃H₇OH to obtain the mass of H₂ is formed:
20.096 g C₃H₇OH x (2 g H₂/60 g C₃H₇OH) = 0.6698 g ≅ 0.67 g H₂
Answer:
mixtures
Explanation:
Mixtures contain two or more substances that are relatively easy to separate. The individual components of a mixture can be physically separated from each other.