Answer:
Explanation: I think...
Thermal Energy formula Q = mcΔT
Q = Thermal Energy(J)
m = Mass(kg)
c = Specific Heat(J/kg°C)
ΔT = Change in Temperature(°C)
you have to write the equation based on what you are working on
the number of neutrons may b 21
I don't know what you mean when you say he "jobs" the other ball, and the answer to this question really depends on that word.
I'm going to say that the second player is holding the second ball, and he just opens his fingers and lets the ball <u><em>drop</em></u>, at the same time and from the same height as the first ball.
Now I'll go ahead and answer the question that I've just invented:
Strange as it may seem, <em>both</em> balls hit the ground at the <em>same time</em> ... the one that's thrown AND the one that's dropped. The horizontal speed of the thrown ball has no effect on its vertical acceleration, so both balls experience the same vertical behavior.
And here's another example of the exact same thing:
Say you shoot a bullet straight out of a horizontal rifle barrel, AND somebody else <em>drops</em> another bullet at exactly the same time, from a point right next to the end of the rifle barrel. I know this is hard to believe, but both of those bullets hit the ground at the same time too, just like the baseballs ... the bullet that's shot out of the rifle and the one that's dropped from the end of the barrel.
Answer:
The electric force between them is 878.9 N
Explanation:
Given:
Identical charge
C
Separation between two charges
m
For finding the electrical force,
According to the coulomb's law

Here, force between two balloons are repulsive because both charges are same.
Where 

N
Therefore, the electric force between them is 878.9 N