1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lana66690 [7]
4 years ago
14

You drop a ball from a height of 2.0 m, and it bounces back to a height of 1.5 m. a) What fraction of its initial energy is lost

? b) What is the ball's speed after the bounce? c) Where did the energy go?
Physics
1 answer:
tangare [24]4 years ago
4 0
The fraction of energy that is lost is 25%, it depends how fast the ball was going until it lost 25% of its energy, the gravitational energy was transferred into the kinetic energy that helped the ball bounce back
You might be interested in
Your new motorcycle weighs 2450 N.
Snowcat [4.5K]

Answer:

Mass can never be negative. Everything has mass. Just like how they ask you to find area under the graph in maths. If the area is in the 3rd and 4th quadrant, when calculated, you would get negative answer.However, area can not be negative because it is a place/ location. It's exactly the same as mass.

4 0
3 years ago
A 4 kg textbook sits on a desk. It is pushed horizontally with a 50 N applied force against a 15 N frictional force.
GarryVolchara [31]

a) See free-body diagram in attachment

b) The book is stationary in the vertical direction

c) The net horizontal force is 35 N in the forward direction

d) The net force on the book is 35 N in the forward horizontal direction

e) The acceleration is 8.75 m/s^2 in the forward direction

Explanation:

a)

The free-body diagram of a body represents all the forces acting on the body using arrows, where the length of each arrow is proportional to the magnitude of the force and points in the same direction.

From the diagram of this book, we see there are 4 forces acting on the book:

- The applied force, F = 50 N, pushing forward in the horizontal direction

- The frictional force, F_f = 15 N, pulling backward in the horizontal direction (the frictional force always acts in the direction opposite to the motion)

- The weight of the book, W=mg, where m is the mass of the book and g=9.8 m/s^2 is the acceleration of gravity, acting downward. We can calculate its magnitude using the mass of the book, m = 4 kg:

W=(4)(9.8)=39.2 N

- The normal reaction exerted by the desk on the book, N, acting upward, and balancing the weight of the book

b)

The book is in equilibrium in the vertical direction, therefore there is no motion.

In fact, the magnitude of the normal reaction (N) exerted by the desk on the book is exactly equal to the weight of the book (W), so the equation of motion along the vertical direction is

N-W=ma

where a is the acceleration; however, since N = W, this becomes

a=0

And since the book is initially at rest on the desk, this means that there is no motion.

c)

We said there are two forces acting in the horizontal direction:

- The applied force, F = 50 N, forward

- The frictional force, F_f = 15 N, backward

Since they act along the same line, we can calculate their resultant as

\sum F = F - F_f = 50 - 15 = 35 N

and therefore the net force is 35 N in the forward direction.

d)

The net force is obtained as the resultant  of the net forces in the horizontal and vertical direction. However, we have:

- The net force in the horizontal direction is 35 N

- The net force in the vertical direction is zero, because the weight is balanced by the normal reaction

Therefore, this means that the total net force acting on the book is just the net force acting on the horizontal direction, so 35 N forward.

e)

The acceleration of the book can be calculated by using Newton's second law:

\sum F = ma

where

\sum F is the net force

m is the mass

a is the acceleration

Here we have:

\sum F = 35 N (in the forward direction)

m = 4 kg

Therefore, the acceleration is

a=\frac{\sum F}{m}=\frac{35}{4}=8.75 m/s^2 (forward)

Learn more about forces, weight and Newton's second law:

brainly.com/question/8459017

brainly.com/question/11292757

brainly.com/question/12978926

brainly.com/question/11411375

brainly.com/question/1971321

brainly.com/question/2286502

brainly.com/question/2562700

#LearnwithBrainly

8 0
4 years ago
A silver wire 2.6 mm in diameter transfers a charge of 420 C in 80 min. Silver contains 5.8 x 10- free electrons per cubic meter
kifflom [539]

Answer:

a). 87.5 mA or 87.5 x10^{-3}A

b). 1.78 \frac{m}{s}

Explanation:

d=2.6 mm \\Q=420C\\t=80min\\n=5.8x10^{28} \\q=1.6x10^{-19}

n the number of free electrons is 28 in text reference and if they don't give q is take as the charge of electron.

a).

I=\frac{Q}{t}\\ I= \frac{420 C}{80 min}*\frac{1min}{60 s} =\frac{420 C}{4800s}\\  I=87.5 x10^{-3}A

b).

I=n*abs (q)*V_{d}*A

A= \pi * (\frac{d}{2})^{2} \\A=\pi (*\frac{2.6x10^{-3} m}{2})^{2}  \\A=5.309x10^{-6}

V_{d} =\frac{I}{n*abs(q)*A} \\V_{d}=\frac{87.5 x10^{-2} }{5.8x^10{28} *1.6x^{-19} *5.3x^{6} }\\V_{d}=1.78 \frac{m}{s}

8 0
3 years ago
Work out the kinetic energy of a 2.5 kg remote-controlled car that is moving at 2 m/s.
lbvjy [14]

Answer: 5 joules

Explanation:

mass=m=2.5kg

Velocity=v=2m/s

Kinetic energy=ke

ke=(m x v x v)/2

ke=(2.5 x 2 x 2)/2

Ke=10/2

Ke=5

Kinetic energy=5 joules

8 0
3 years ago
A cyclotron is to accelerate protons to an energy of 5.4 MeV. The superconduction electromagnet of the cyclotron produces a 2.9T
mart [117]
<h3><u>Answer;</u></h3>

Radius = 0.0818 m

Angular velocity = 2.775 × 10^7 rad/sec

<h3><u>Explanation;</u></h3>

The mass of proton m=1.6748 × 10^-27 kg;  

Charge of electron e= 1.602 × 10^-19 C;  

kinetic energy E= 2.7 MeV

                          = 2.7 × 10^6 × 1.602 × 10^-19 J;

                          = 4.32 × 10^-13 Joules

But; K.E =0.5m*v^2,

Hence v=√(2K.E/m)

Velocity = 2.27 × 10^7 m/s

Angular velocity, ω = v/r

Therefore; V = ωr

Hence; V = √(2K.E/m) = ωr

r= √(2E/m)/w = √E*√(2*m)/(eB)

  = √E * √(2×1.6748×10^-27)/(1.602×10^-19 ×2.9)

but E =  4.32 × 10^-13 Joules

  r = 0.0818 m

Angular speed

Angular velocity, ω = v/r , where r is the radius and v is the velocity

Therefore;

Angular velocity = 2.27 × 10^7 / 0.0818 m

                            = 2.775 × 10^7 rad /sec

3 0
3 years ago
Other questions:
  • A block slides from rest with negligible friction down the track above, descending a vertical height of 5.0 m to point P at the
    5·1 answer
  • Give two ways of reversing the direction of the forces on the coil in the electric motor?​
    10·1 answer
  • A 10-meter long ramp has a mechanical advantage of 5. What is the height of the ramp?
    10·1 answer
  • How many electrons does nitrogen (N) need to gain to have a stable outer electron shell?
    14·1 answer
  • would the density of a person be the same on the surface of the earth and on the surface of the moon?
    15·1 answer
  • lock of mass m2 is attached to a spring of force constant k and m1 . m2. If the system is released from rest, and the spring is
    7·1 answer
  • A parallel-plate capacitor is constructed of two square plates, size L×L, separated by distance d. The plates are given charge ±
    9·1 answer
  • Which type of force is a noncontact force?​
    14·2 answers
  • How much power is needed to produce 500 joules of work if 20 watts are used?
    8·2 answers
  • A uniform solid sphere of unknown radius and mass floats exactly half-submerged in a fluid of density 999 kg/m3. Find the densit
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!