Cost = (0.001) x (the wattage of the light) x (the number of hours it's left on) x (the cost of each kilowatt-hour of electrical energy where you live).
Answer:
reflection
Explanation:
an example would be looking in the mirror
Answer:
Intensity of the light (first polarizer) (I₁) = 425 W/m²
Intensity of the light (second polarizer) (I₂) = 75.905 W/m²
Explanation:
Given:
Unpolarized light of intensity (I₀) = 950 W/m²
θ = 65°
Find:
a. Intensity of the light (first polarizer)
b. Intensity of the light (second polarizer)
Computation:
a. Intensity of the light (first polarizer)
Intensity of the light (first polarizer) (I₁) = I₀ / 2
Intensity of the light (first polarizer) (I₁) = 950 / 2
Intensity of the light (first polarizer) (I₁) = 425 W/m²
b. Intensity of the light (second polarizer)
Intensity of the light (second polarizer) (I₂) = (I₁)cos²θ
Intensity of the light (second polarizer) (I₂) = (425)(0.1786)
Intensity of the light (second polarizer) (I₂) = 75.905 W/m²
Answer:
a) a = 4.9 m / s², N = 16.97 N and b) F = 9.8 N
Explanation:
a) For this exercise we will use Newton's second law, we write a reference system with the x axis parallel to the plane, see attached, in this system the only force we have to break down is weight, let's use trigonometry
sin 30 = Wx / W
cos 30 = Wy / W
Wx = W sin30
Wy = W cos 30
Let's write the equations on each axis
X axis
Wx = ma
Y Axis
N- Wy = 0
N = Wy = mg cos 30
N = 2.0 9.8 cos 30
N = 16.97 N
We calculate the acceleration
a = Wx / m
a = mg sin 30 / m
a = g sin 30
a =9.8 sin 30
a = 4.9 m / s²
b) For the block to move with constant speed, the acceleration must be zero, so the force applied must be equal to the weight component
F -Wx = 0
F = Wx
F = m g sin 30
F = 2.0 9.8 sin 30
F = 9.8 N