Answer:
9.4 m/s
Explanation:
The work-energy theorem states that the work done on an object is equal to the change in kinetic energy of the object.
So we can write:

where in this problem:
W = -36.733 J is the work performed on the car (negative because its direction is opposite to the motion of the car)
is the initial kinetic energy of the car
is the final kinetic energy
Solving for Kf,

The kinetic energy of the car can be also written as

where:
m = 661 kg is the mass of the car
v is its final speed
Solving, we find

Answer:
11250 N
Explanation:
From the question given above, the following data were obtained:
Normal force (R) = 15000 N
Coefficient of static friction (μ) = 0.75
Frictional force (F) =?
Friction and normal force are related by the following equation:
F = μR
Where:
F is the frictional force.
μ is the coefficient of static friction.
R is the normal force.
With the above formula, we can calculate the frictional force acting on the car as follow:
Normal force (R) = 15000 N
Coefficient of static friction (μ) = 0.75
Frictional force (F) =?
F = μR
F = 0.75 × 15000
F = 11250 N
Therefore, the frictional force acting on the car is 11250 N
Answer:
The answer to your question is Nonmetals
Explanation:
Nonmetals they are bad conductors of heat and electricity except graphite.
Metalloids they are less conductors of electricity than metals.
Noble gases they conduct electricity.
Halogens they are not metals and do not conduct electricity.
From this information, we conclude that Oxygen and Selenium are nonmetals.
Answer:
1.87 A
Explanation:
τ = mean time between collisions for electrons = 2.5 x 10⁻¹⁴ s
d = diameter of copper wire = 2 mm = 2 x 10⁻³ m
Area of cross-section of copper wire is given as
A = (0.25) πd²
A = (0.25) (3.14) (2 x 10⁻³)²
A = 3.14 x 10⁻⁶ m²
E = magnitude of electric field = 0.01 V/m
e = magnitude of charge on electron = 1.6 x 10⁻¹⁹ C
m = mass of electron = 9.1 x 10⁻³¹ kg
n = number density of free electrons in copper = 8.47 x 10²² cm⁻³ = 8.47 x 10²⁸ m⁻³
= magnitude of current
magnitude of current is given as


= 1.87 A