Answer:
P(4≤x≤7) = 2/3
Step-by-step explanation:
We'll begin by obtaining the sample space (S) i.e possible outcome of rolling both dice at the same time. This is illustrated below:
1,1 1,2 1,3 1,4 1,5 1,6
2,1 2,2 2,3 2,4 2,5 2,6
3,1 3,2 3,3 3,4 3,5 3,6
4,1 4,2 4,3 4,4 4,5 4,6
5,1 5,2 5,3 5,4 5,5 5,6
6,1 6,2 6,3 6,4 6,5 6,6
Adding the outcome together, the sample space (S) becomes:
2 3 4 5 6 7
3 4 5 6 7 8
4 5 6 7 8 9
5 6 7 8 9 10
6 7 8 9 10 11
7 8 9 10 11 12
Next, we shall obtain the event of 4≤x≤7. This is illustrated below:
4 5 6 7
4 5 6 7
4 5 6 7
4 5 6 7
4 5 6 7
4 5 6 7
Finally, we shall determine P(4≤x≤7). This can be obtained as follow:
Element in the sample space, n(S) = 36
Element in 4≤x≤7, n(4≤x≤7) = 24
Probability of 4≤x≤7, P(4≤x≤7) = ?
P(4≤x≤7) = n(4≤x≤7) / nS
P(4≤x≤7) = 24/36
P(4≤x≤7) = 2/3
Answer:
ENQEU
Step-by-step explanation:
The equations give you information as to where to plot points.
For y = -x + 1, you know the slope is -1, and the line intersects the y-axis at (0, 1). The y-axis is the vertical line; to plot (0, 1), find 1 on the vertical line and mark it. Now, the slope is -1; that means the line will slope downwards. To plot more points, count 1 unit down from (0, 1) and 1 unit to the right. You should end up at (1, 0).Connect those and you have a line.
For y = -2x + 4, the slope is -2 (so it will also slope downwards), and the y-intercept is 4. Find (0, 4) and plot it. The -2 tells you to count 2 units down (instead of 1 like we did for the last equation) and 1 over. That is the second line.
I hope this helps.