Answer:
See explaination for details and diagram
Explanation:
We can say that Chemical reaction is a process in which one or more substances, the reactants, are converted to one or more different substances, the products. Substances are either chemical elements or compounds.
A chemical reaction rearranges the constituent atoms of the reactants to create different substances as products.
See attachment for the buffer of the chemical reaction.
Answer:
The balanced chemical equation: NH₃ + 2 HF → NH₄⁺ + HF₂⁻
Explanation:
According to the Brønsted–Lowry acid–base theory, the acid- base reaction is a type of chemical reaction between the acid and base to give a conjugate acid and a conjugate base.
In this reaction, a Brønsted–Lowry acid loses a proton to form a conjugate base. Whereas, a Brønsted–Lowry base accepts a proton to form a conjugate acid.
Acid + Base ⇌ Conjugate Base + Conjugate Acid
The acid dissociation constant (Kₐ) <em>signifies the acidic strength of a chemical species.</em>
∵ pKₐ = - log Kₐ
Thus for a strong acid, Kₐ value is large and pKₐ value is small.
pKₐ (HF) = 3.2 → strong acid
pKₐ (NH₃) = 38 → weak acid
<u>The chemical reaction involved in the dissolution process:</u>
NH₃ + 2 HF → NH₄⁺ + HF₂⁻
In this acid-base reaction, the acid HF reacts with NH₃ base to give the conjugate base HF₂⁻ and conjugate acid NH₄⁺.
<u>HF (acid) donates a proton to form the conjugate base, HF₂⁻ ion. NH₃ (base) accepts a proton to form the conjugate acid. </u>
Answer:
0.007 g of deprenyl dose is required fro the patient with body mass of 70 kilograms.
Explanation:
The dose for treating Parkinson’s disease = 100 μg/kg body weight
Mass of patient's body = 70 kg
Amount of dose of deprenyl required = 100 μg/kg × 70 kg = 7,000 μg
1 μg = 0.00001 g
7,000 μg = 7,000 × 0.000001 g = 0.007 g
0.007 g of deprenyl dose is required fro the patient with body mass of 70 kilograms.
Here are some examples for those type of reactions.
<span>
Combustion reaction: CH4(g) + 2 O2(g) --> CO2(g) + 2 H2O(l)
</span><span>
Decomposition reaction: CaCO3(s) ---> CaO(s) + CO2(g)
</span><span>Double replacement: AgNO3(aq) + NaCl(aq) ---> AgCl(s) + NaNO3(aq)
</span>One common thing in all is that they are reactions. They have reactants to form new substances called product.