Heat capacity of aluminium = 0.900 J/g°C
While heat capacity of water = 4.186 J/g°C
Heat = heat gained by water + heat gained by aluminium
Heat gained by water = 100 × 4.186 × 30.5
= 12767.3 Joules
Heat gained by aluminium = 15 × 0.9 × 30.5
= 411.75 Joules
Heat required = 13179.05 Joules or 13.179 kJoules
The rate in m/s is 5.2 * 10^-4 m/s.
<h3>What is the rate in m/s?</h3>
We know that the speed is given as the ratio of the distance covered to the time taken. In this case, we have been told that the rate at which the tide rises is 6.08 ft per hour. We would now need to convert the rate from 6.08 ft per hour to m/s.
Now;
We know that;
1 foot/hour = 8.5 * 10^-5 m/s
6.08 ft per hour = 6.08 ft per hour * 8.5 * 10^-5 m/s/1 foot/hour
= 5.2 * 10^-4 m/s
Learn more about speed:brainly.com/question/28224010
#SPJ1
Answer:
D. All of them would have the same kinetic energy
Explanation:
The expression for the kinetic energy of the gas is:-
k is Boltzmann's constant =
T is the temperature
<u>Since, kinetic energy depends only on the temperature. Thus, at same temperature, at 300 K, all the gases which are
will posses same value of kinetic energy.</u>
The alkali metals, which occupy group 1 of the periodic table. This is because the valence shells of these elements have only 1 electron, so easily form an ionic bond with a non-metal compound by donating this. A cation is formed by this donation, since there is one fewer electron orbiting the nucleus than there is in the atomic form - conversely an anion is formed when an atom gains an extra electron to become negatively charged.
When compounds form, the atoms that bonded get a stable arrangement of electrons.
Compounds form because their atoms get a more stable arrangement than they had in the reactants.
A stable arrangement is a <em>complete octet</em> of eight electrons in the valence shell
.