Answer:
The value of heat transfer during the process Q = - 29.49 KJ
Explanation:
Given data
= 50
= 344.7 k pa
= 0.113 
F = 366.4 K
= 477.6 K
Poly tropic index n = 1.2
gas constant for oxygen = 0.26 
From ideal gas equation
= m R 
Put all the values in above equation we get
⇒ 344.7 × 0.113 = m × 0.26 × 366.4
⇒ m = 0.408 kg
Heat transfer in poly tropic process is given by
Q = ![\frac{\gamma - n}{( \gamma - 1)( n - 1)} [ {m R (T_{1} - T_{2} ) ]](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cgamma%20-%20n%7D%7B%28%20%5Cgamma%20-%201%29%28%20n%20-%201%29%7D%20%5B%20%7Bm%20R%20%28T_%7B1%7D%20-%20T_%7B2%7D%20%20%29%20%5D)
Put all the values in above formula we get
⇒ Q = ![\frac{1.4 - 1.2}{( 1.4 - 1)( 1.2 - 1)} [ {m R (T_{1} - T_{2} ) ]](https://tex.z-dn.net/?f=%5Cfrac%7B1.4%20-%201.2%7D%7B%28%201.4%20-%201%29%28%201.2%20-%201%29%7D%20%5B%20%7Bm%20R%20%28T_%7B1%7D%20-%20T_%7B2%7D%20%20%29%20%5D)
⇒ Q = 2.5 × 0.408 × 0.26 × ( 366.4 - 477.6 )
⇒ Q = - 29.49 KJ
This is the value of heat transfer during the process & negative sign shows that heat is lost during the process.
true ........i really dont kno but ok hope this helps
It really doesn't matter whether it's a compression wave in a Slinky®,
or a trained frog, or a model airplane, or a baby chicken.
Time = distance / speed
Time = (9 m) / (2 m/s) = 4.5 seconds
Answer:
i. F = 1.3 x
N
ii. The direction of the force of attraction exerted by the proton on the electron is towards the itself (i.e a pull).
Explanation:
Since the given charges are opposite, then the force of attraction is experienced. The force of attraction between the two charges can be determined by:
F = 
where F is the force, k is the constant,
is the charge of the electron,
is the charge on the proton, and d is the distance between them.
So that; k = 9.0 x
N
,
= 1.6 x
C,
= 1.6 x
Thus,
F = 
= 
= 1.3061 x
F = 1.3 x
N
The force between the charges is 1.3 x
N.
ii. The direction of the force of attraction exerted by the proton on the electron is towards the itself.
Answer:
an object sliding down hill
Explanation:
On a slope, the force applied is due to gravity. Its direction is straight down. If the object is sliding down the hill, its displacement is at an angle to the applied force. The angle of displacement will depend on the steepness of the hill.