Assuming acceleration due to gravity of the moon is constant and there’s no initial velocity in the mans jump we can use one of the kinematic equations. x(final)=x(initial)+(1/2)gt^2. Plug in known values. 0=10-(1.62/2)t^2. The value 1.62 is acceleration of gravity on the moon. Now simply solve for t. t=3.513
The final velocity is +15.0 m/s
Explanation:
The motion of the cart is a uniformly accelerated motion (=at constant acceleration), therefore we can use the following suvat equation:

where
v is the velocity at time t
u is the initial velocity
a is the acceleration
t is the time
For the cart in this problem, we have:
u = +3.0 m/s (initial velocity)
(acceleration)
t = 8.0 s (time)
Substituting, we find the final velocity:

Learn more about accelerated motion:
brainly.com/question/9527152
brainly.com/question/11181826
brainly.com/question/2506873
brainly.com/question/2562700
#LearnwithBrainly