Answer:
(a) Bus will traveled further a distance of 40 m
(b) It will take 7.5 sec to stop the bus
Explanation:
We have given initial velocity of the bus u = 24 m/sec
And final velocity v = 16 m/sec
Distance traveled in this process s = 50 m
From third equation of motion we know that 


(a) Now as the bus finally stops so final velocity v = 0 m/sec
So 

s= 90 m
So further distance traveled by bus = 90-50 =40 m
(b) Now as the bus finally stops so final velocity v= 0 m/sec
Initial velocity u = 24 m/sec
Acceleration 
So time 
Answer:
0.087 m
Explanation:
Length of the rod, L = 1.5 m
Let the mass of the rod is m and d is the distance between the pivot point and the centre of mass.
time period, T = 3 s
the formula for the time period of the pendulum is given by
.... (1)
where, I is the moment of inertia of the rod about the pivot point and g is the acceleration due to gravity.
Moment of inertia of the rod about the centre of mass, Ic = mL²/12
By using the parallel axis theorem, the moment of inertia of the rod about the pivot is
I = Ic + md²

Substituting the values in equation (1)


12d² -26.84 d + 2.25 = 0


d = 2.15 m , 0.087 m
d cannot be more than L/2, so the value of d is 0.087 m.
Thus, the distance between the pivot and the centre of mass of the rod is 0.087 m.
Answer:
17.66 kPa
Explanation:
The volume of water in the swimming pool is the product of its dimensions
V = 30 * 8.7 * 1.8 = 469.8 cubic meters
Let water density
, and g = 9.81 m/s2 we can calculate the total weight of water in the swimming pool

The area of the bottom
A = 30 * 8.7 = 261 square meters
Therefore the pressure is its force over unit area
or 17.66 kPa