Answer:
A
Explanation:
because newton's second law states that if a resultant force acts on an object then, it will accelerate in the direction of the resultant force
Answer:
If we’re talking about objects on the Earth, the gravitational potential energy is given by:
Explanation:
PEg=mgh
so the energy is proportional to the mass ( m ), but also to the strength of the gravitational field ( g ), and the height ( h ) to which the mass is lifted.
Answer:
65.87 s
Explanation:
For the first time,
Applying
v² = u²+2as.............. Equation 1
Where v = final velocity, u = initial velocity, a = acceleration, s = distance
From the question,
Given: u = 0 m/s (from rest), a = 1.99 m/s², s = 60 m
Substitute these values into equation 1
v² = 0²+2(1.99)(60)
v² = 238.8
v = √238.8
v = 15.45 m/s
Therefore, time taken for the first 60 m is
t = (v-u)/a............ Equation 2
t = (15.45-0)/1.99
t = 7.77 s
For the final 40 meter,
t = (v-u)/a
Given: v = 0 m/s(decelerates), u = 15.45 m/s, a = -0.266 m/s²
Substitute into the equation above
t = (0-15.45)/-0.266
t = 58.1 seconds
Hence total time taken to cover the distance
T = 7.77+58.1
T = 65.87 s
Grass dear wolf is the right awnser
Answer:
Explanation:
Given that,
Number of turn N = 40
Diameter of the coil d= 11cm = 0.11m
Then, radius = d/2 = 0.11/2 =0.055m
r = 0.055m
Then, the area is given as
A =πr²
A = π × 0.055²
A = 9.503 × 10^-3 m²
Magnetic Field B = 0.35T
Magnetic field reduce to zero in 0.1s, t = 0.1s
so we want to find induce electric field. To find the electric field,(E) we need to find the electric potential (V).
E.M.F is given as
ε = —N • dΦ/dt
Where magnetic flux is given as
Φ = BA
Then, ε = —N • dΦ/dt
ε = —N • dBA/dt
ε = —NBA/t
Then, its magnitude is
ε = NBA/t
Inserting the values of N, B, A and t
ε = 40×0.35×9.503×10^-3/0.1
ε = 1.33 V
Then, using the relationship between Electric field and electric potential
V = Ed
ε = E•d
E = ε/d
E = 1.33/0.11
E = 12.09 V/m