metals are conductors, meaning that heat travels through it better than insulators such as plastic (commonly used for pan handles)
Therefore, to avoid the heat burning hands, most pans don't have metal handles.
Answer:
H = 45 m
Explanation:
First we find the launch velocity of the ball by using the following formula:
v₀ = √(v₀ₓ² + v₀y²)
where,
v₀ = launching velocity = ?
v₀ₓ = Horizontal Component of Launch Velocity = 15 m/s
v₀y = Vertical Component of Launch Velocity = 30 m/s
Therefore,
v₀ = √[(15 m/s)² + (30 m/s)²]
v₀ = 33.54 m/s
Now, we find the launch angle of the ball by using the following formula:
θ = tan⁻¹ (v₀y/v₀ₓ)
θ = tan⁻¹ (30/15)
θ = tan⁻¹ (2)
θ = 63.43°
Now, the maximum height attained by the ball is given by the formula:
H = (v₀² Sin² θ)/2g
H = (33.54 m/s)² (Sin² 63.43°)/2(10 m/s²)
<u>H = 45 m</u>
Answer:
The time where the avergae speed equals the instaneous speed is T/2
Explanation:
The velocity of the car is:
v(t) = v0 + at
Where v0 is the initial speed and a is the constant acceleration.
Let's find the average speed. This is given integrating the velocity from 0 to T and dividing by T:

v_ave = v0+a(T/2)
We can esaily note that when <u><em>t=T/2</em></u><u><em> </em></u>
v(T/2)=v_ave
Now we want to know where the car should be, the osition of the car is:

Where x_A is the position of point A. Therefore, the car will be at:
<u><em>x(T/2) = x_A + v_0 (T/2) + (1/8)aT^2</em></u>
Atmospheric refraction is the deviation of light or other electromagnetic wave from a straight line as it passes through the atmosphere due to the variation in air density as a function of height. ... Refraction not only affects visible light rays, but all electromagnetic radiation, although in varying degrees.
So in short, the answer is D.
(My answer got deleted because it didnt explain which is dumb)
KE = 1/2 mv^2 is the relationship betwee mass and kinetic energy