Initial volume of mercury is
V = 0.1 cm³
The temperature rise is 35 - 5 = 30 ⁰C = 30 ⁰K.
Because the coefficient of volume expansion is 1.8x10⁻⁴ 1/K, the change in volume of the mercury is
ΔV = (1.8x10⁻⁴ 1/K)*(30 ⁰K)(0.1 cm³) = 5.4x10⁻⁴ cm³
The cross sectional area of the tube is
A = 0.012 mm² = (0.012x10⁻² cm²).
Therefore the rise of mercury in the tube is
h = ΔV/A
= (5.4x10⁻⁴ cm³)/(0.012x10⁻² cm²)
= 4.5 cm
Answer: 4.5 cm
Answer;
C. The brightness of each bulb would remain the same even though the total resistance of the circuit would decrease.
Explanation;
-If light bulbs are connected in parallel to a voltage source, the brightness of the individual bulbs remains more-or-less constant as more and more bulbs are added to the circuit.
-The current increases as more bulbs are added to the circuit and the overall resistance decreases. In addition, if one bulb is removed from the circuit the other bulbs do not go out. Each bulb is independently linked to the voltage source
Mechanical advantage is the ratio of output force to input force of a machine.
hope this helps and have a great day :)
Answer:
l=3.5 x 10^-10m
Explanation:
just toook the test got it right good luck!