Answer:
V₂ = 14.07 L
Explanation:
As this gas is cooled at constant temperature of 320 K, this means that we are on an isothermal process, and according to the 1st law of thermodynamics:
Q = W (1)
And as the temperature is constant, we can use the following expression to calculate the Work done:
W = nRT ln(V₁/V₂) (2)
However, as Q = W, we can replace heat into the above expression and then solve for V₂:
Q = nRT ln(V₁/V₂)
Replacing we have:
1200 = (1.5 * 8.314 * 320) ln(19/V₂)
1200 = 39907.2 ln(19/V₂)
ln(19/V₂) = 1200/3990.72
ln(19/V₂) = 0.3007
19/V₂ = e^(0.3007)
V₂ = 19 / e^(0.3007)
<h2>
V₂ = 14.07 L</h2>
Hope this helps
The answer is 52.79 m.
I used this formula to get the formula for Vy:
v^2=vi^2+2(a)(x)
And got
Vy=square root (19.6 h)
Then I used that and put it in this formula:
tan(65) =Vy/Vx
tan(65) = square root (19.6 h)/15.0
Then I rearranged it to:
h=[(15.0)(tan65)]/19.6
h=52.79 m
Answer:
a) Magnetic field strength, B = 2.397 * 10⁻⁷ T
b) Total energy density, U = 4.58 * 10⁻⁸ J/m³
c) Power flow per unit area, S = 13.71 W/m²
Explanation:
a) Electric field strength, E = 71.9 V/m
The relationship between the Electric field strength and the magnetic field strength in vacuum is:
E = Bc where c = 3.0 * 10⁸ m/s
71.9 = B * 3.0 * 10⁸
B = 71.9 / (3.0 * 10⁸)
B = 23.97 * 10⁻⁸
B = 2.397 * 10⁻⁷ T
b) Total Energy Density:

c)Power flow per unit area
