Answer:
An increase in angular speed due to conservation of energy priciple.
Explanation:
This leads to a decrease in your moment of inertia. This means that your angular velocity must increase as a result of conservation of energy principle and therefore you will spin faster.
It's also the same way this conservation of energy principle applies to ice skaters that makes them spin faster when they suddenly draw their arms inwards.
Answer:
Explanation:
1 ) Magnetic field due to a circular coil carrying current
= μ₀I / 2r
I is current , r is radius of the wire , μ₀ = 4π x 10⁻⁷
= 4π x 10⁻⁷ x 15 / (2 x 3.5 x 10⁻²)
= 26.9 x 10⁻⁵ T
2 )
Negative z direction .
The direction of magnetic field due to a circular coil having current is known
with the help of screw rule or right hand thumb rule.
3 )
If we decrease the radius the magnetic field will:__increase _____.
A. Increase.
Magnetic field due to a circular coil carrying current
B = μ₀I / 2 r
Here r is radius of the coil . If radius decreases magnetic field increases.
So magnetic field will increase.
The energy needed to move an electron in a hydrogenatome from the ground state (n=1) to n=3 will be 1.93 *10^-18J and 12.09 eV.
<h3>How to compute the value?</h3>
The following can be deduced:
Energy of electron in hydrogen atom is
En = -13.6 /n2 eV
where n is principal quantum number of orbit.
Energy of electron in first orbit = E1 = -13.6 / 12 = - 13.6eV
Energy of electron in third orbit = E3 = -13.6 /32 = -1.51 eV
Energy required to move an electron fromfirst to thirdorbit ΔE = E3- E1
ΔE = -1.51 - ( 13.6) = 12.09 eV
Energy in Joule = 12.09 *l/× 1.6 × 10^-19 = 1.93 × 10^-18 J.
Learn more about energy on:
brainly.com/question/13881533
#SPJ1
Complete question:
How much energy is needed to move an electron in a hydrogenatome from the ground state (n=1) to n=3? Give theanswer (a) in joules and (b) in eV.
Answer and Explanation:
This can be explained as in Rutherford's model of atom the electrons orbits the nucleus which means that they will travel around the nucleus with some velocity and hence radiate electromagnetic waves which results in the loss of energy due to which the electron keeps coming closer and eventually falls into the nucleus.
But Bohr came up with a better explanation as according to the Bohr's atomic model, electrons stay fixed in orbit with certain energy in different shells around the nucleus and can only jump from an energy level to another if that specific amount of energy is supplied to it.
This model is based on the quantization of energy thus giving an explanation why electrons do not fall into the nucleus of an atom.